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Abstract

The Parallel Evaluation and Experimentation Platform (PEEP) is the result of an effort
at Rome Laboratory to identify the most promising software development tools, techniques
and approaches from industry and academia for programming high performance parallel
computers to meet the needs of Command and Control (C2) applications. The PEEP is a
prototype platform for evaluating the applicability of results from parallel programming
research efforts to improve the productivity of designers and developers. Intermetrics
conducted a study of available innovative tools and techniques, beginning in early 1990.
From the survey, we chose candidates for inclusion on a prototype platform, and began to
install and evaluate the chosen components. With the prototype PEEP, we conducted a
number of experiments developing small parallel programs using the selected tools. The
purpose of these experiments was not to advance the state of the art in parallel algorithms,
but to exercise the tools collected for the prototype PEEP. Based on this work, we identified
requirements on architectures, life cycle activities and technologies to support parallel
development and developed a long range plan for the PEEP. Our conclusions from these
experiments also suggest useful methodologies for developing parallel software, and have
led to recommendations based on the performance of the current tools and on the projected
needs of parallel software development.
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1 Introduction

1.1 The Challenge

The technology for parallel processing is evolving rapidly. New hardware
architectures are being introduced each year in both the research and commercial sectors.
Following these developments, and sometimes in advance of them, is a multitude of
approaches to the development of applications capable of exploiting these "high
performance" parallel processing architectures. However, there is neither consensus on the
"best" processors nor the "best" methods for developing applications to exploit these
architectures--nor is there likely to be. Rather, a number of diverse architectures will
emerge and coexist, as will a multitude of methods for software development. Therefore, to
exploit the potential of parallelism, the challenge is to provide a means to match the "best"
architecture(s) with the "best" method(s) for a given application problem.

While high-performance, parallel architectures have received much attention for
Scientific Computing, their suitability to embedded Command and Control (C2) applications
has been less studied. The potential in C2 is somewhat different from Scientific Computing,
as a result of the different characteristics of the problem space. For example, many scientific
applications consist of fairly simple calculations carried out on a massive scale-for such
applications a Single Instruction Multiple Data model is appropriate. However, C2

applications often deal with large numbers of distinct, autonomous entities, each with its
own state and set of behaviors, as in simulation, tracking, or Battle Management. Because
C2 applications are often embedded systems, much of their code must deal with interactions
with other systems (e.g., timing, event handling), in contrast to scientific applications which
are purely transformational (input/output-oriented). Furthermore, as embedded systems,
these applications may have much higher Reliability, Maintainability and Availability
reqwrements than laboratory appucations. Consequently, the complexity of these
applications results in software which dwarfs the "codes" developed for scientific
computing. Unfortunately, there is little experience in parallel programming-in-the-large--
meeting this challenge is the goal of Software Engineering for Parallel Architectures
(SEPA) project.

1.2 Background

The emerging generation of parallel processors offer unprecedented opportunities for
high performance computing, in terms of pushing the limits of what may be computed, and
doing so with greater accuracy, efficiency, timeliness, and reliability.

Hardware architectures for parallel processing may be usefully characterized as falling
into three classes: Multiple Instruction Multiple Data (MIMD), Single Instruction Multiple
Data (SUMD), and mixed systems. Within the class of MIMD architectures, the principal
parameter of variation is the interconnect strategy-the topology of connections among
processors. The range of interconnection strategies varies widely, from pair-wise
connections intended to make arbitrary communication sufficiently fast for typical
computations, to specialized busses, grids, and hierarchical stuctures, usually intended to
optimize communications under some set of assumptions. MIMD architectures may utilized
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shared memory between processors, or message passing, or both. This mix is another
important parameter of MIMD systems.

There are several commercially available MIMD processors including the BBN
Butterfly, the Sequent machine, "hyper cubes" (so named for their interconnection scheme)
from a number of vendors, and others. MIMD machines are typically constructed from
"stock" processors such as the MC680X0.

In the class of SIMD architectures there are fewer commercially available machines.
The Connection Machine, is perhaps the best known; array processors and vector
processors also fall into this class. As with MIMD architectures, the principal parameter of
variation is the interconnection scheme.

There are a variety of mixed architectures. For example, Cray computers are built from
one to four Single Instruction Single Dam (SISD) processors, integrated with vector
processing elements. Signal processing computers are also mixed architectures, typically
containing sequential processors, application-specific elements, and array processors.

Dataflow machines present a highly parallel "virtual machine" but may in fact be
constructed of any types of underlying hardware.

Neural network architectures are another mixed system-constuted from a variety of
sequential, array, and specialized processors--but giving the appearance of SIMD; each
neuronal processing element has its own data but follows a single processing rule: to
produce its output by firing when the weighted sum of its inputs exceeds a certain
threshold.

Of course to achieve the goals of high performance computing, parallel hardware isn't
enough-we need software capable of exploiting its ,apabilities. Thus, to exploit parallel
architectures we must ask, Where will this Software come from? There are several
alternatives: (1) existing, sequential software may be reused as-is; (2) sequential software
may be re-engineered to exploit parallelism; and (3) new software may be developed which
exploits the parallel capabilities of hardware through its application of new (parallel)
algorithms and data structures. Alternatives (2) and (3) require development; unfortunately,
software development is hard, even for today's well-understood sequential machines. The
discipline of Software Engineering has emerged over the past 30 years out of the field of
Computer Science to confront the issues of developing large, critical software applications.
Software Engineering contributes models, languages, tactical methods, and strategic
processes for organizing software development.

Although we now are beginning to have adequate models of sequential computing, we
lack comparably powerful formal models of parallel computation. Although it is easy to
generalize a sequential model to a parallel collection of sequential "threads," there are two
further considerations: coordination between threads, and the issues of parallel data. That
must be factored into a process for engineering parallel software. We lack adequate theories
in these areas which are suitably rigorous and sufficiently expressive to be generally useful.
This seems to be because our concepts in these areas are still highly architecture-specific, or
so low-level as to be ineffectual for large systems (in the same way that attempting to
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program an automated teller sy'em using a Turing machine formalism would be
infetal).

As we attempt to raise the level of software engineering for parallel systems, we face
issues such as:

* What impact do parallel architectures have on the design process? And, what tools
can help to manage this impact?

* How does one understand and isolate target machine dependencies?
* What are the trade-offs between portability and efficiency?
* How does language choice influence design?

To address questions such as these, the SEPA program built a prototype framework
within which to evaluate current parallel processing technologies: hardware, software, and
methods. This framework is the Parallel Evaluation and Experimentation Platform (PEEP).

1.3 Overview of Approach

In this section, we outline our approach to developing the PEEP.

Based on an initial understanding of the problem domain, we began by surveying
currently available capabilities to support parallel development. These capabilities include:
parallel programming languages, parallel programming tools and environments, software
design and analysis tools and methods, and the underlying hardware needed to host these
capabilities. The survey led to an identification of a number of promising, publicly available
tools and techniques which we characterized fo their applicability to various parallel
programming problems. The resulting preliminary "tool/problem matrix", documented in
the survey report, led to the initial population of the PEEP. We have subsequently refined
the initial matrix based on further experimentation and analysis. The original and revised
results are discussed in section 2.

The most visible result -f the SEPA program is of course the PEEP itself, which has
been defined, configured, operated and delivered within the course of this effort. Section 3
provides an overview of the PEEP, its design and prototype implementation, and a
discussion of its continued evolution.

The PEEP served as a base upon which to evaluate parallel development methods.
Three experiments were defined and carried out, reflecting three different "problems" in
software development for parallel systems. In section 4, we describe this series of
experiments, and our findings with regard to methodology and the usability of tools and
techniques in support of that methodology.

Section 5 summarizes our overall conclusions and recommendations for the future in
terms of requirements for the software engineering of parallel systems, and a SEPA long-
term plan.
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2 Survey of Parallel Processing Tools and Techniques

2.1 Introduction

As a part of the SEPA program, we surveyed existing, available technology for parallel
architectures. We began with a literature search, using the facilities of the MIT libraries, and
a number of computerized searching systems. In many cases we followed up by contacting
the researchers, finding references to current and upcoming projects as well. As a
foundation, we had access to two recent surveys: Survey of Parallel Computing [Miller,
1989] and Software Techniques for Non-Von Neumann Architectures [Lightfoot, et al.,
1990]. Our work was meant to supplement, not replace, these existing surveys. The focus of
this survey was parallel software development tools. For this reason operating systems such
as Mach or Cronus were not considered as part of the survey since they do not fit in the
tools category. It is important to note that the survey was not exhaustive, and that it has a
bias towards University projects rather than commercial products. Papers in the literature
tend to be the results of academic research rather than descriptions of commercial tools.

The technologies we surveyed fell into several categories:
"* programming environments and tools relevant to parallel programming
" program visualization (including program animation and modeling)
"• parallel languages

The purpose of surveying the first category was two-fold: to identify promising
approaches to integrated frameworks (i.e., environments) in support of parallel program
development; and to identify promising tools supporting some aspect of parallel program
development.

Under this category, the following tools and environments were surveyed
(descriptions of these, and all other tools mentioned in this report are provided in appendix
B):

GARDEN
FIELD
PIE
Prometheus
Faust
CODE
Pisces
Rn
BALSA II
TANGO
PARET
VMMP
Omega/PegaSys
PSG
POKER
ISSOS
Unity
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PADWB
Schedule

Tool Degn Graph= Alg I/gr- Sol Pormbil- Ptform Pan/don Debug/
/A__n Select tion Prow it Test

GARDEN X X X X -X
-ML -FIELD X

PmF x x x x

CODE X X x
Pisme - -- X -
Rn X X X X X

TANGO X -
PARET X*~ X A X X
VMMP X

xM x
Pewsys
PSG X x x
POKER X x x
ISSOS -X X X

UNITY X x
PADWB x x
Schedule X

The following systems were examined as visualization systems:
BALSA-i1
TANGO

We initially looked at the following parallel languages:
MultiLisp
Occam
Linda
Molecule
Crystal
Paralation modelC *

Id
Unity
UC
Joyce



" Technology Targets New/Extension
MultiLisp Lg/ mn grain Ha T Encore MultWnax Extension

Dataflow style BBN Butterfly
Primarily M[IMD _Aliant FX/8

OccaF LargeAnedium grain INMOS Tranpue New Language
Communicating sequential

M essage based ______________ In e______Ete s o
Linda Model Largemnedium grai - Intel iPSC/2 Extension

Broadcast messages Encore Multimax
MEAD Sequent

Symmetry
A__iat FX/_

Molecule Layered software development Hwang/USC Intel iPSC/2 Extension
Dataflow XuwRutgersMIMD__

Crystal Functional language hIntl iP$C/2 New Language
Data parallel Connection
LageAnediumrn Machine

VAX (interpreter)

Paralation Data parallel Sii Connetion Extension
Model Fene/medium grain Machines Machine

C* Data parallel for massively FR& Connection Extension
rW HThinking Machine

________armaily SImD Machines_______
Id Functional language ArvindMF r MIT tagged-oken New language

Dataflow Nikhi/MIT dataflow
Fine ' architecture

UNITY modeParallel por spRwifio-n __.______as Not applicable New language

UC separation of programming Bagrodie/UCIA Connection Extension
and efficiency isses Chawdy/Carrech Machine
parallel program maintenance KwAUJCLA
ease

Joyce Distributed processes Brinch- Intaerer New language
Remote procedure call across Hansen/USC available
network

__________Large grain_______ ________ _______

2.2 Tool/Problem Matrix

Based on the information gathered in the survey we initially developed a tool/problem
solution matrix covering the software development problems of parallel software, and some
additional problems relating to quality and management concerns of large software systems.

It was interesting to note that most of the tools surveyed do not address the quality
and management aspects of developing software. The primary reason these issues are not
addressed in the tools surveyed is probably that these tools are almost entirely university
research projects. As such, they are not concenmed with risk assessment or measuring

* Targets represents known implementations of the languages at the time of the survey. It is possible that

there are other implementations, either not known at the time, or implemented since then.
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productivity, or with the engineering of truly large and complex systems. Further, for many
software engineering activities, whether the problem domain or target hardware is inherently
parallel is irrelevant to the activity, thus technical or management tools for parallel software
development need not be different from those for ordinary software engineering.

The initial matrix was split into 3 tables. The first mapped tools to parallel software
engineering problems. The second mapped tools to quality issues, and the last mapped tools
to management issues.

PARALLEL SOFTWARE ENGINEERING PROBLEMS

Tool Spec Design Co A1g. Par Dam Part Load Comp Cam Debug Reuse Nu
Test Se Eval Dist Bal RefI /Test Procs

PIE X X X X X
Prometheus X X X X X - X
Faust X X X XX X -X X X
CODE X X X X - X

Rn - X X X X
BALSA n1 X X
TANG X -

PARETr X X X X X X X

VMMs I
PegaSys
PSG X X X
POKER X XX X X

--S X -R- - -

PAWS X X
S-2- x - X - x x -
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PARALLEL SOFTWARE QUALITY ISSUES

Tool Reliability Maintainability oblit Efficiency
PIE,
Prometheus xK
SFaust x
"COsDE' X

,BALSA I
TANGO

__ mN x x

omega/ X
PegaSys
PSG
POKER X
ISSOS
ScheduleX
PAWS 'X

PARALLEL SOFTWARE MANAGEMENT PROBLEMS

Tool Productivity Risk Resource Arhitecture
Measurement Assessment Allocation Determination

PIE
Prometheus
Faust
CODE
Pisces _

BA&SA II
TANGO

1VMMP"

Omega/y
PSG
S.POKER
ISSOS
Schedule
PAWS X'
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2.3 Discussion

One result of our study was a reformulation of the matrix developed earlier in this
project. We expected to update the matrix as we used tools to reflect additional capabilities
not mentioned in the papers, or to downgrade capabilities that were not supported to the
extent we expected. The original matrix also needed revision in structure for three main
reasons. First, some of the "problems" in the original matrix are simply phases of the
software development cycle, such as design, and are not specific to parallel software
development even though there may be some unique problems. For some of the "problems"
which are unique to parallel software development, it seemed important to identify where in
the development process these problems need to be addressed. Finally, some of the
"problems" are usually determined by external factors, and are not directly addressable by
themselves. We also classified the tools in terms of supporting some particular technique,
such as simulation, that is used to help the developer solve the problems. The new
tool/problem solution matrix is structured in terms of the software development life cycle,
and the unique problems added by parallel architectures to each phase of the process. The
following sections describe the new matrix sructure, and present an updated matrix based
on the tools actually evaluated.

2.3.1 Revised Matix Structure

Of the original "problems", Specification, Design, CodeWTest, and Debug/Test become
life cycle activities. In the new matrix they are broken down into Requirements Analysis and
Definition, High Level Design, Low Level Design, Implementation, and Testing and
Integration. This life-cycle and the parallel programming "problems" addressed during each
phase are discussed below.

Requirements Analysis and Definition is concerned with defining the application
and identifying interfaces. The activities associated with this phase have to do with analyzing
the requirements for completeness, consistency, feasibility, and customer acceptability.
These activities are not necessarily changed ff the architecture is parallel rather than
conventional. For example, user interface requ ts having to do with screen layout
would not influence the architecture of the machine, but user interface requirements having
to do with response time could influence the architecture if it became clear that they could
only be met with a parallel implementation. So it is possible that all requirements analysis
could be affected by having a parallel architecture, or it could be completely independent.
Ideally, this phase of the software development process would be completely architecture
independent unless a specific architecture was listed as a requirement.

Design immediately follows requirements analysis and definition, and in some cases
the division can be blurred. Consider the case where an application has been partitioned into
it's major processes during requirements analysis to determine feasibility. Is this still
requirements analysis, or is it the beginning of design? Even the line between high level and
low level design can be blurred. For the purpose of this study, high level design is classified
as identifying the main components of the software and the interfaces between them, while
low level design is more concerned with how the previously identified components will be
implemented. In addition to the normal design processes of decomposing the problem and
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defining interfaces, high level parallel software design also involves Process Partitioning,
Data Distribution, and Data Coordination. These are defined as follows:

"• Process Partitioning is the process of breaking the application into separate
processes that could be performed in parallel.

"* Dam Distribution refers to the process of determining how data should be divided
among processors. Some aspects of this problem vary depending on the
architecture, and may be influenced by the process partitioning. For example, it is
more important for data to be local to the process that uses it in a message passing
MIMID architecture than on a shared memory machine.

"* Data Coordination is the process of identifying the communication or
synchronization of data between processes. This previously came under the
heading of Communication.

During low level design the high level design problems are investigated in more detail,
and the following additional problems must be addressed.

" Algorithm Selection may be determined by the architecture ff it is already known, or
it may determine the appropriate architecture. Ideally the algorithm would still be
architecture independent, but given the current state of the practice, this is usually
not the case.

"• Data Type Determination is the process of specifying the important abstract data
types.

"* Control Synchronization refers to the process of determining necessary
synchronization between processes. Such as points where one function must
complete before another can proceed. This also came under the Communication
heading in the old matrix.

It should also be noted that language selection must be done during the design phase.
This is also true of sequential software development, but for parallel software development it
is more likely to be determined by external factors such as availability on the target, or
availability of existing source code. One problem is not unique to parallel software design,
but should be mentioned because none of the parallel design tools support it. That is the
production of review materials. Part of any design process is to hold a design review where
experts read the design and comment on it. It is necessary, therefore, to produce some sort
of review materials for the reviewers to read. This is lacking in all of the tools surveyed.

Implemntation is probably the best defined portion of the development process. In
the new matrix it is broken down into coding, linking/loading, and debugging.

"* Coding includes both writing and compiling the application.
"* Linking/Loading refers to the process of building the complete application from the

compiled code and loading it on the parallel target.
"• Debugging covers the testing of independent pieces of code; finding and fixing bugs

as they arise.

In general purpose computers, linking/loading is usually considered to be the last step
of coding. We have split it out for parallel machines because the linking and loading of a
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parallel application usually involves some mapping of processes to processors. All of the
implementation problems apply equally to sequential programs, however, special tools, e.g.
parallel debuggers, are needed in the case of parallel software.

Testing and Integration is the part of the process where all the pieces of the
application are brought together and tested as a whole to determine whether all the
requirements me met The testing and integration problems are Validation Testing, and
Performance Measurement and Tuning.

"* Validation Testing verifies the application meets requirements. In general, validation
testing is the processor of measuring the reliability and correctness of the software.
Testing parallel software involves finding additional problems, such as non-
deterministic bugs or deadlock situations.

"• Performance Measurement and Tuning involves finding the bottlenecks in the
application and making adjustments to the application to alleviate them without
creating other bottlenecks.

The remaining problems in the old matrix, Load Balancing, Computation Replication,
Number of Processors and Reuse were removed for the following reasons.

Load Balancing divides into static load balancing and dynamic load balancing.
Dynamic load balancing has to be implemented at the operating system level. It is not
something that can be added after the fact by a tool, and it is not addressed directly during
the development process. Static load balancing is addressed during the development
process, but is covered by a combination of the other development problems: performance
evaluation, process partitioning, and data distribution.

Computation replication, that is the duplication of a computational unit on more than
one processor, tends to be language dependent, for example, via task types in Ada. In
languages that are extensions of sequential languages it is sometimes handled by an
additional tool at link time which maps processes to processors, but again it is language
dependent.

Number of processors represented the problem of determining the ideal number of
processors for a given application. This was generally not a concern during the development
process. Either the number of processors was a known, limited number, in which case the
challenge was to design the most efficient algorithm for that number, or the number of
processors was variable, and the solution was designed in terms of an unlimited number of
"virtual processors" which could then be mapped to the actual number of processors when it
was known. The latter was also the best approach to take when concerned about scalability
as it is easier to map a greater number of virtual processors to fewer actual processors, than
it is to break up an algorithm that was designed with a given number of processors in mind.

Reuse could be classified in two of ways. First is the ability to reuse existing code
fragments, "dusty decks", as is, in a parallel framework. This is usually dependent on the
language and whether it is based on an existing sequential language. Second is the ability to
write code that can be reused on different parallel architectures. This is xmre of a quality
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issue, and it depends on whether this is an important consideration for the application in
question. Quality issues are discussed below in section 2.4.

In addition to identifying the parallel software development problems addressed by a
particular tool, we identify whether a particular problem solving technique (such as
simulation) is employed. In some cases a tool does not realy focus on any one particular
problem, but supports a particular technique which could be used by the developer to
analyze a problem.

23.2 Revised Tool/Problem Solution Matix

The revised matrix includes only tools which were evaluated in more depth during this
project. This includes tools which were used during the development of the sample
problems, or tools for which we had the user documentation in addition to the published
paper.

Requirments Analysis Design

Too Complete C n y. Dati Control
Language Part. Dist. C j Synch.

- - i - - - -_Ada 9X
BALSX..,.A H ,,;_,
.CODF./ROPE t' ,

CSN Ilustrate
CSTools,,
id t t t
PAWS*

POKER - * *
PProto *"_TANG _ * - -

emTest Integration Support Technology

Toon/ Coding L D Valdation *a Prootype S i VisWalze
Lu~gaaeLoad Eval

* *

.CtCsal

CSN-nlustrate

CSToolS *Id ki• * * * *

PAS** 0

"- -' ' - - -*
POKER'*

PProto * *

_TANGO2



In the matrix '*' indicates a problem that is intended to be solved, 't' indicates a
problem which the tools does not claim to solve, but to which we tried to apply it because
there seemed to be a possibility the tool would help.

Note: Languages are now included on the list to the extent that a particular compiler or
interprter was available on the PEEP prototype. See section 4 for more detailed evaluations
of the tools.

2.4 Further Development

Based on the updated Tool/Problem Solution Matrix it appears that future matrices
should also try to capture quality issues. That is, how the tool or technique improves the
quality of the resulting application. To some extent the quality of the application depends on
dte requirements. For example, architecture portability may not be an important
consideration is the application is required to run on only a single target architecture. In this
case a non-portable implementation is not necessarily a low quality result

Therefore further matrices should try to capture the support of the following system
"ilitie~s":

Main,'c -'biiity
Evolvability
Scalability
Architecture Portability
Reusability
Productivity

Note, efficiency is not on this list, as presumably the main reason for using a parallel
architecture is to improve efficiency or throughput. As a result, all tools that aid in parallel
software development could be said to improve efficiency.
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3 PEEP Configuration

In this section we provide an overview of the PEEP configuration and the criteria that
led to this configuration.

3.1 Architecture

"The PEEP is designed to be an evolvable configuration of hardware and software,
such that it is both immediately usable, relatively robust, and yet open. The hardware base
which has been selected consists of well-established, off-the-shelf, mature "stock"
hardware.

Sun workstations form the main platform of the PEEP. Two Suns were procured for
the project, a Sun4/330 and a Sun4/470. These workstations include color monitors and a
graphics accelerator in order to provide full color graphics. The intent of selecting these
machines is to support the bulk of software development In addition to the Suns, the PEEP
will incorporate an Apple Macintosh computer, to utilize that system's sophisticated user
interface, while integrating it with the Sun "backbone" which will act as file server. At
Rome Laboratory, the Sun4/470 will be a back-end server to a network of Apple
Macintoshes connected via EtherneL The Macintoshes serve as multi-user front ends for the
PEEP and also be used to perform data analysis on research results and maintain the PEEP
documentation. The architecture is shown in the figure below.

The Meiko In-Sun Computing Surface was installed in both Sun workstations. It
provides a scalable, multi-processor distributed memory architecture. Each individual
processor executes sequential code using its own dedicated memory. Processors
communicate via efficient, high speed inter-process message links. Each computing surface
contains 16 processors and is configurable in a number of different ways. This flexibility in
the configuration will allow the Suns to be used to help determine the most efficient
processor configuration for a given parallel application. Computing surfaces may be
combined using the expansion slots on the Suns, so more boards may be easily added in the
future to further expand the parallel capabilities of the Suns.
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3.2 Design

As the tools being evaluated on the PEEP will change ovea time, it is important to have
a solid foundation on which to build. A primary goal of the PEEP design is openness. The
PEEP should be open to hosting new tools, languages, and methods. Also, given its primary
role as a platform for experimentation with software tools from so many diverse sources, it
must be easy to host as many of these as possible. For this reason, Suns, running UNIX
and X, and Macintoshes, running X, were an ideal choice for hosting the diverse collection
of university and commercial tools identified by our earlier study.

There will be a core set of tools on the PEEP upon which the rest of the system will be
builL Sun workstations are equipped with a number of tools that naturally become a part of
the core PEEP. The Suns nm the UNIX opeting system, which has rapidly become
accepted as a de facto standard operating system. Other tools which are packaged with the
workstation include sequential language compilers and debuggers, a program building
facility (make), source configuration management tools, and a number of editors and other
text processing tools.

Early in the design process, we considered the possibility of recommending a multi-
processing operating system like Cronus or Mach. In the long-run, this may be an
evolutionary goal, however, at present, most of the tools with which we have populated the
PEEP run under UNIX (Sun OS), and it remains the best choice for this time.

Layered on top of Sun OS is Sun's Open Windows graphical user environmenL This
is based on the X Window System from MIT. Tools which require basic X facilities run
without modification under Open Windows, as will tools developed specifically to exploit
Open Windows.
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Open Windows provides the most basic level of tool integration from the user's
viewpoint. Tools resident on the PEEP are accessible to users via a special PEEP menu that
has been added to the default workspace menu provided by Open Windows.

Further integration is provided by FIELD from Brown University. FIELD was
developed as a framework for integrating software development tools. Using FIELD's
message passing system, independent parallel software development tools could share
information. Another tool from Brown University, GARDEN, provides a mechanism for
supporting multiple parallel languages for prototyping and language evaluation.

3.3 Prototype Implementation

To implement the PEEP prototype the various hardware components described in
section 3.1 were purchased. The main task then was to populate the PEEP with promising
parallel tools and languages identified in the survey. This was accomplished in stages and
tool acquisition continued throughout the project.

Sun workstations were chosen as the platform because many of the surveyed tools
would run on them, however, there were some tools that were not implemented for the Sun.
These tools were immediately excluded from the list of tools to be considered for the PEEP
as porting any tool to a new target was considered outside the scope of this project.

Of the remaining tools we focused on the ones that were the most language or target
independent, or that at least supported multiple targets or languages. Acquisition of a tool
usually involved the following steps:

S1. Contact the main developer to determine current status of the project
2. Determine whether Sun workstation implementation of the tool is available.
3. Get pricing information and licensing agreement.
4. Negotiate license agreement.
5. Complete purchase and receive delivery.

In some cases the software was freely available and accessible via the internet. Step 3
in that case becomes a simple case of downloading the software over the internet, and steps
4 and 5 are not necessary. The results of our attempts to get each tool are documented in the
table below.

Tool Contact Install Problems Comments

*Lisp Sim Thinking Yes *Lisp Subset
Machines

BALSA II Mark EL Brown Yes Macintosh Host only Demo disk installed
CODE/ROPE James Browne Yes Took over 6 months New version, CODE

to get software 2.0, will provide better
support

Crystal Marina Chen Yes Compiler for iPSC/2 Interpreter for Sun
target never available host used
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Tool Contact Install Problems Comments

CSTools Meiko Yes Compiler and tools
supplied with Meiko
transputer board

DINO Robert B. No Unable to contact
Schnabel developer

EXPRESS Parasoft No Commercial product
similar to CSTools

Faust Hammerslag No Tools no longer Did receive tape, but
supported unable to install

software
FORCE Harry F. Jordan No Product not

supported
Hypertasking Marc Baker No Unsupported Intel iPSC/2 host only

software
Id Arvind Yes Took over 2 months Initial version

to negotiate license required Common
Lisp to be installed

IPS-2 Barton Miller No VAX hosted only Started a Sun port,
but never finished

ISSOS Karsten/Schwan No Unable to contact Project ended
developers

Linda (C) David Gelertner No Research became
Scientific commercial product
Computing
Associates

Molecule Kai Hwang No Unable to contact
developer

Olympus Gary Nutt No Incompatible with Received license
Xwindows agreement

PADWB Gould No Unable to contact Appears published
developers paper may have been

proposal rather than
results

PARET Nichols/Edmark No Unable to contact
developers

PAT Kevin Smith No FORTRAN specific Freely available via
ftp

PAWS Dan Pease Yes Not available until Only beta version
end of project

PCN Yes Not available until Available via ftp over
end of project internet

PIE Zary Segall No Unable to contact
developer
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Tool Contact Install Problems Comments

PISCES Terry Pratt No FLEX/32 host only Project on hold not
likely to restart

POKER Larry Snyder Yes Took over 6 months Sun3 version only
to negotiate license
agreement

POSYBL No Required network of Free implementation
Sun workstations of Linda for network

of workstations
available via ftp

PProto ISSI No Required ONTOS PProto available from
DBMS Rome Laboratory

Prometheus Sean Arthur No Project abandoned New project
TaskMaster

STRAND-88 Tim Mattson No Commercial parallel
language

TANGO Steve Reiss Yes Available via ftp

TaskMaster James D. Arthur No VAX hosted only

TOPSYS Thomas No iPSC/2 host specific
Bemmerl

A number of problems arose during this process:
" Many tools were lost because the developer had left the company or graduated. In at

least one case the current employees had never heard of the tool. In another case the
tool was available, but without documentation, and in an incomplete state.

"• Universities are often not equipped to distribute the results of their research outside
the academic community. The best example of this is the licensing agreements
supplied by the Universities. It was usually necessary to make substantial changes
to the agreement to make it acceptable for a commercial company, and in particular
to make it available to the government. It often took months to negotiate the license
agreements.

"* The tool might not exist because the published paper represented future plans that
were not implemented due to never receiving the funding support.

"• Software support varies a great deal. Some ongoing projects are only too happy to
provide support when they learn that a third party is using their tool. In other cases
the software is delivered "as is" with no documentation, no installation instructions,
incomplete sources and no support.

"* In rare cases we simply got no response at all, even after several phone calls or e-
mail messages.

3.3.1 Integration

There were also problems with the planned integration approach of using FIELD and
GARDEN.
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First, the tools we acquired were too independent or self-contained to be integrated
using FIELD. Often the tools were based on completely different assumptions making the
sharing of information meaningless. Also, the type of integration that would have been of
most use was "sequential." That is, the output of one tool could have been useful as the
input to another. FIELD is designed for more "parallel" integration, where two tools are
running at the same time and communicate when changes are made. For example, imagine a
syntax directed editor for a parallel language, and a tool which does some sort of static
analysis. If the editor broadcasts when a change is made, the analyzer can update its analysis
based on the change.

Second, GARDEN was not robust enough for heavy use, and restrictions on input and
output of the source form of a program made it difficult to use in the way we had intended.
It is also the case that research on GARDEN has stopped for the moment while the
developers concentrate on FIELD. As a result it is not likely to improve in the near term

However, we did integrate one tool using the FIELD mechanism. TANGO is an
algorithm animation tool that was also developed at Brown University. It was already
integrated with FIELD in its sequential form. In order to use TANGO with the transputer
we ported the target specific portions of TANGO to the transputer. Once that was complete
it was possible to animate a program running on the transputer with the display on the Sun
workstation. For further evaluation of TANGO see section 4.

3.4 Evolution

Specific recommendations for the evolution of the PEEP are given in section 5.

Above the level of individual tools, it would be desirable that the degree of integration
evolve toward'greater tool integration and interemrability. This could be achieved via:

"* a common intermediate language at the virtual machine interface
"* common program database facilities
"• common information capture capabilities

FIELD could still be used as the integration mechanism in some cases, but a common
data format is needed to provide the "sequential" integration.
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4 Experimentation and Evaluation

We conducted a series of experiments in parallel development The purpose of these

experiments was two-fold: (1) to evaluate the functionality and usability of the tools and
techniques which had been selected for the PEEP, and (2) to investigate the larger issues of
"parallel-programming-in-the-large": development methodology, tool and technique
combinations, and life cycle concerns.

Based on the survey, we determined that not all life cycle areas were equally well
supported. Current tools supporting such activities as requirements analysis and functional
testing, for example, are somewhat limited in scope. In many cases, this reflects the fact that
there has been limited success in these activities for all kinds of software development-not
just for parallel architectures. Recognizing the practical limitations of available resources, we
chose to concentrate our experimentation on those areas where there is the most activity and
potentially the most leverage to be gained by applying the best available technology. Active
areas include parallel languages, parallel development environments, and overall analysis
techniques from early system level performance simulation to monitored execution.

This chapter is organized to highlight these methodological and life cycle issues. In
the next section, we describe the three parallel pMrgramming problems we investigated.
Subsequent sections address the full sequence of Requirements, Design, Coding, etc.,
following the SEPA Problem Space matrix we described in Chapter 2.

4.1 Problem Characteristics

We identified three parallel programming problems for experimentation on the PEEP.
Each was selected to investigate certain issues in parallel programming. Our emphasis was
not on creating new parallel algorithms-there is already plenty of work on this in the
literatre. Rather, our emphasis was on the engineering of relatively well-understood
algorithms within a parallel programming context This allowed us to focus on
methodology, life cycle concerns, and tool/technique usability.

The first problem chosen for study was parallel sorting. Sorting is a fundamental
computing problem invariably present in any large C2, or information systems application.
In a previous study done for Rome Laboratory, Computer Sciences Corporation identified
such C2 functions as pattern analysis and database maintenance where sorting is a potential
component [Lightfoot, et at., 19901. Since sorting in the sequential case is so well-studied,
we were interested in moving existing, sequential, algorithms to a parallel architecture such
that any inherent parallelism could be exploited. The "porting" of sequential algorithms to
parallel architectures is a form of parallelization which has been , and is likely to continue to
be quite common.

The second problem chosen was parallel searching. Searching arises in many database
retrieval and real-time pattern analysis functions. It is critical in large databases, in target and
threat analysis, and in weapons management and assessment activities. [Lightfoot, et al.,
1990] document its use in more than half of C2 functions. In a realistic environment,
searching must take place where there are possibly multiple readers while a writer is
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updating the search space with new data. We chose this problem to investigate "cooperative
conacurrcy" wherein there is a degree of explicit coordination - a style quite different
from that implied by the inherent parallelism of the previous problem. Furthermore, the
problem may be tackled at various granularities from single element locking to large-grain
tasking.

Image warping enables two-dimensional data to be presented from a three-
dimensional perspective determined by a possibly varying angle of visibility. It is useful in
analyzing topographical data and managing the display of terrain data in modern C31
battlefield support; it could also be employed for realistic simulations. Image warping is an
example of a more compute-intensive applications than sorting and searching, and involves
enough numeric and graphics issues to raise an orthogonal set of parallel programming
issues. Image warping is naturally modeled on a SIMD machine--we implemented it on the
Transputer, a MIMD architecture. Because SIMD architectures are highly machine specific,
we were interested in seeing whether we could achieve a "target-independent" formulation
of the problem. This experiment also enabled us to investigate communication and data
granularity trade-offs. Lastly, the system was connected to an X display, allowing us to
consider the requirements for synchronization necessary to yield a coherent image.

Appendix A provides additional descriptions of the three experiments.

4.2 Approach

Our overall approach was to carry out our experimental development activities on the
prototype PEEP-demonstration of the efficacy of coordinated use of tools on a powerful
workstation with access to various parallel hardware architectures was a primary goal of the
prototype PEEP. Tools were selected to each cover a relatively specific part of the life cycle,
or support function. Since this selection did not address the question of common
functionality, a remaining area of consideration was common services that can be shared to
enhance overall platform effectiveness.

Initial versions of all experiments were programmed in C and targeted to a 16 node in-
SUN Transputer board attached to the PEEP SPARCStation. The Meiko CSTools were
used for the first phases of work on all the problems. We were also able to target one of the
problems to the Intel iPSC02, but were not able to get any timing results due to space and
memory limitations.

The tools acquired for the PEEP to be evaluated as a part of our experiments are listed
below. Summaries of these and all the tools mentioned in this report are provided in
Appendix B. The tools evaluated are divided into two groups: tools which we attempted to
use for the experiments; and tools which we installed, or tried to install, but were not able to
use for the experiments for various reasons.

Used for experiments:
CODE- parallel CASE tool (University of Texas, Austin)
CSNjmustrate - visualizing Transputer configurations (Intermetrics)
CSTools - C and FORTRAN compiler system for transputer (Meiko)
Id - dataflow language (MNUT
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*Lisp - SIMD version of Lisp (Thinking Machines)
PProto - parallel requirements tool (RIJISSD

Not used for experiments:
Crystal - language with special index set notation (Yale)
PAWS - performance assessment tool (RLlSyracuse University)
PCN - hierarchical graphical language (Argonne Labs)
POKER - parallel environment (University of Washington)
TANGO - support of algorithm animation (Brown University)

Recommendations regarding these tools are included in section 5.

4.3 Requirements Analysis and Definition

Within Requirement Analysis and Definition, one is concerned with defining the
problem to be solved, and the constraints on the solution. The result of this activity is a
requirements definition which may be analyzed for completeness, consistency, realizability
and customer acceptability. The requirements definition determines the functionality of the
system to be built. Insofar as possible, the requirements specification should be as free from
design and implementation considerations as possible. So, in one sense, the issue of
whether a problem is to be solved using a parallel architecture is irrelevant in Requirements.
This argues against the need for particular, parallel architecture-oriented requirements tools.
While the state of the practice in requirements tools and techniques is somewhat immature,
most decent requirements techniques do not presume or enforce a sequential model of
computation (e.g., SADT, IDEF, SREM).

Due to the limited scope of our investigations--thre problems relatively well-defined
by existing algorithms-we did not undertake anything which approached a formal
requirements activity for the three problems.

However, we did use Id as a high-level, architecture-independent executable
specification lp.guage. In the experiments reported, these specifications were only at the
algorithmic level, but the same style of specification could be used more abstractly in the
specification of a larger system. While we found the dataflow model embodied by Id to be a
very architecture-independent form of expression, there are some drawbacks to the dataflow
model which could be a problem for large systems. In particular, the lack of a notion of state
requires operations to be parameterized by each object they operate on (see Id specification
of Search in A.2). This defeats information hiding-readability--4n requirements
specifications, and (as discussed below) introduces communication problems in
implementations. Id's dataflow model also does not permit the easy expression of
communication requirements.

We had expected that *Lisp would play a similar high-level, specification role, but we
had limited success using the *Lisp simulator provided by Thinking Machines as only a
subset of *Lisp is supported. The *Lisp simulator is intended to be a learning tool, not as a
serious development tool.
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PProto is intended to support requirements analysis, but it was not used for the
experiments as it was not available at the time.

4.4 Design

Design is generally broken into High-Level and Detailed (or, Low-Level) Design. In
High-Level Design, the problems pertain to:

"• Process Partitioning
"* Data Distribution
"• Data Coordination

In Detailed Design, the issues are:
"* Algorithm Selection
"* Data Type Determination
"• Control Synchronization

The tools that were used during design are Id and PProto.

Our first experiment did not use any parallel design tools, as none were available on
the system at the time. Instead we used what turned out to be a trial and error approach. The
initial design for the sorting algorithm was to divide the data into as many chunks as there
were processors available on the tranm •uter, sort each chunk using a fast sequential
algorithm on each transputer, and merge the sorted chunks. The communication between
processors is shown in the diagram below.

CS host (Sparc)

The rationale behind such a design was that this would have the maximum number of
processors working on the problem at the same time. The results of this sorting algorithm
were quite poor as the partitioning of the data into chunks, and passing it out to the
individual processors created communication bottlenecks.

We later turned to a dataflow approach to design. This was supported by the id
language and analysis tools. This involved demonstrating in Id (see A. 1) that the quicksort
algorithm itself had some inherent parallelism. We wrote the quicksort algorithm in Id, and
ran the Id interpreter displaying a graph of parallel arithmetic operations. It was difficult to
interpret the graph as there was no way to tell what was going on at any given point in time,
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but it did seem to indicate that the quicksort algorithm itself could be exploited for some
parallelism. This was implemented on the transputer, and the results were substantially
better than the first sort implementation. The basic algorithm was to take the data and divide
it into two lists, one greater than, one less than, a given component. The two lists are passed
to two processors, while the first processor waits for their results. Their results are two
sorted lists which can simply be concatenated to form the final list. This algorithm is
repeated at each node until there are no more nodes, at which time the remaining elements
are sorted using a sequential sort. This approach, shown in the diagram below, was not
considered when designing the quicksort by hand because it appears to make poor use of
the available processors.

At the point where the sequential sort takes place (the bottow row of processors) half of the
processors are simply waiting for results, and only half of the processors are working on
the problem. However, the use of Id as a design tool led us to this counter-intuitive solution
which turned out to be quite effective as the results shown below demonstrate.

#of Item 2 processors 4 processors 8 processors 16 processors

-st 2nd 1st 2NO st 2nd 1st 2nd
Impl Impl Impl Imol IMpl Imnl ImPl IMPl

80,000 1172.6 -9.0 149.8 4.-7 143.7 'TO- 157.3 2.4

160,_ 2.8 TS 18.9 .27. . 296.0 - -4.9
320,000 689.8 42.5 611.2 2. 8. 1.6 6.7 O.

We also tried to use the Id dataflow design approach to the search experiment. We
were able to try out a number of approaches. At this time we received a new version of Id
that allowed the performance graphs to use color in various ways. We were able to assign a
color to each Id function in our program, and when the arithmetic operations graph was
displayed, the graph was colored according to how may operations a given function was
running in that cycle. This color coding of the graph was very helpful, and also served to
show us that often our interpretation of the graphs had been wrong. In the black and white
graphs we would try to associate a peak in the graph with something we knew was
happening in the algorithm. When we used the color graphs we would discover that a
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function quite different from the one we were expecting was contributing to the peak in the
graph. Thus, the color version of Id is much more useful than the older version.

A drawback of the Id design approach with respect to the second experiment was the
fact that as a very fine grained approach to parallelism, it did not really help with our goal of

investigating synchronization issues. Id performs its locking at a very low level, so the type
of explicit synchronization that one might need in an Ada implementation, for example, are
missing in the Id implementation. Note that this does not necessarily mean that an Id
specification is not a good way to start, but just that it did not support our goal of
investigating synchronization issues. In general, Id provided a good way to investigate
algorithms, but it is not designed to provide any kind of feel for what the communication
costs would be once it was implemented in a non-dataflow language on actual hardware.
Unfortunately, in all three experiments the communication costs were a large factor in the
poor performance of early versions of each program. It appears that communication costs
are something that software engineers inexperienced with parallel programming have
difficulty predicting.

One approach we tried for investigating communication costs was to use PProto.
PProto is not intended for use as a design tool, but since it should help with analyzing the
feasibility of requirements, it appeared that it could help to predict communication
bottlenecks. This analysis actually took place after having implemented the image warping
algorithm a number of ways for the transputer. However, our premise was that if PProto had
been available earlier it would have saved us from implementing some of the image warping
versions by predicting the communication bottlenecks, and prompting us to investigate other
approaches. In prototyping the first version of the image warping algorithm, which suffered
from a severe I/O bottleneck, PProto did predict some of the communication costs. We were
also able to analyze what would have happened if more processors were available.

While PProto was generally useful, there were two places where PProto could have
provided more functionality. In order to prototype the image warping algorithm we first had
to model the transputer board. This was quite time consuming, and PProto would be greatly
enhanced if it had more architectures built in than it does now. This would probably help
during requirements analysis too; particularly if a specific architecture is a requirement.
Additionally, the level of hardware characterization currently supported is not detailed
enough to base a hardware decision on. Possibly, if PProto had better hardware
characterization facilities, it could be used for deciding which machine to buy.

The other place where we ran into problems with PProto was when we wanted to
create a variation on an existing design. This was a problem at two levels. First, no way to
create a copy of a whole existing prototype was identified in the PProto documentation. As
a result, the only way we could create a variation was to either change the existing prototype,
or create a new one, and duplicate all the work of creating the original. Secondly, creating
the new variant was harder because the facilities for copying existing components is limited.
For example, when prototyping the transputer architecture most of the nodes are almost
identical. It would have been easier to create different variants of the wansputer with
different numbers of processors if it were possible to duplicate the component representing
the node.
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Overall, however, PProto was successful at helping us identify the communication
bottlenecks, and in analyzing performance with different numbers of processors. It would

also have saved time in the implementation phase, since it would have been easier to try the
different communication strategies, which were actually implemented, in PProto, and then to
implement the best of them.

We had originally felt that selecting a parallel programming language would be an
important part of the design process. With the current state of parallel programming
languages this turned out not to be the case. In general, the choice of actual implementation
language would be limited to one of a few conventional languages, probably C or
FORTRAN with parallel programming extensions (such as Linda), or possibly Ada. The
languages designed for parallel progamming, such as Crystal or Id, were not available at all
on actual parallel machines, or only on a limited number. While due to logistics, this was not
a concern for this project, in the future, the choice of implementation language may well be
an important design decision. However, there are no tools currently that support making this
choice.

We had originally identified a number of other tools as supporting design including,
among others, POKER, CODE, and Faust. Upon closer investigation, these tools appear not
to support the design phase so much as the implementation phase. They are concerned
mainly with making it easier to compose parallel programs. Both CODE and POKER
require that some amount of real code exist in order to perform as intended. It is possible
that these tools could be used for some aspects of design, such as identifying shared
variables in CODE, but code would have to exist for the rest of the program.

One last point should be made when discussing the tools that support the design
phase. None of the tools produce anything that could be used as the basis of a design
review. One drawback of this is that while the final design may be captured as a prototype
or executable model, the decisions leading to that design are not captured anywhere.

4.5 Implementation

During implementation, target-specific programs are developed, based on the detailed
design as input. Most module, algorithm, and data structure decisions should have been
made in Detailed Design, so what remains to be done in this phase is the transformation of
these structures to a progranming language appropriate to the target architecture.
Depending on the facilities of that programming language, this transformation may involve
more or less effort, and considerations such as portability, scalability, etc., may be more or
less supported

Most of the tools surveyed fall into this category. Unfortunately, a lot of them are also
specific to a particular language and target machine. It is much easier to design and build a
tool or suite of tools with a particular language and target machine in mind. However, the
intent of the PEEP is to'rovide a platform where a programmer can experiment with
multiple languages and multiple target architectures, so we concentrated on tools that
purported to support multiple languages or to be architecture independent. Debuggers are
almost always very target dependent, so no debuggers were evaluated.
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The tools used for implementation are CODE and CSTools, although with limited
success in the case of CODE. Other tools discussed, but which were not used for the
experiments are Crystal, PAWS, PCN and POKER.

CODE (version 1.2) supports three languages, Ada, C and FORTRAN, and a number
of target machines. We tried to implement the first experiment in C with CODE. This
should have been a good match because CODE supports a graphical dataflow
reresentation, and the quicksort specification was in Id, a dataflow language. One could
even imagine being able to automate the translation between Id and CODE to some extent.
Unfortunately we ran into a few problems with the CODE implementation. First, the
support in CODE for replicating code sequences did not work, so we could not implement
the quicksort as specified. We continued experin,'ting w" h CODE, but using the
examples that were provided as tutorials instead t r own sample programs. In this way,
we were able to generate actual code that could ha. been compiled on a parallel machine. In
order to produce code for a particular machine using CODE, a TOAD (Translators of a
Declaration) for that machine is needed. We were not able to actually compile and run any
of the generated programs because the set of TOADs provided with CODE did not include
any of the parallel machines to which we had access (iPSC/2, warp systolic array, CM-2,
Multimax or Alliant). We also tried generating an Ada version of the tutorial. The code
produced looked correct, but relied on rendezvous very heavily which could result in poor
perfornmance, depending on the particular Ada compiler used. On the other hand, this was
the most portable approach and should work with any Ada compiler. On the positive side,
we were able to get support from CODE's developers, and in fact these problems should be
fixed in CODE 2.0 which is about to be released. CODE 2.0 will support the replication of
nodes and subgraphs, and has improved its Ada generation capabilities. It should also be
noted that the type of mutual exclusion being implemented with Ada rendezvous could be
enormously simplified if implemented using the Protected Type introduced in Ada 9X.
Obviously, this will not be available in the next version of CODE, but is likely in future
versions of CODE after Ada 9X is approved.

We also tried to use POKER as a coding tool. POKER supports simulation of a
variety of non-shared memory MIMD machines. The user enters the parameters for the
machine indicating the number of processors and the connections between them. We did
not actually use POKER because it could not be installed on the SPARCStation. Based on
reviewing the documentation POKER appears to have some capabilities similar to CODE.
Like CODE, it can produce output that can be compiled on a limited number of target
machines. It also supports a tracing facility for debugging, and a profiler for simulating
execution times. In terms of languages, POKER only supports it's own dialect of C, and a
simple sequential language called XX.

PCN was received too late in the project to attempt to implement any of the
experiments. However, it was installed successfully. It includes a number of interesting
features that can be described. PCN is a language and a set of tools. One interesting aspect
of PCN is that it provides interfaces to FORTRAN and C that allow existing code to be
reused. It also provides a debugger (PDB), an execution profiler (Gauge), and a trace
analyzer (Upshot). From reviewing the documents it appears that PCN would support initial
debugging and analysis of the program on the SPARCStation prior to moving the program
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to a parallel target, or a network of workstations. Of particular interest is the fact that PCN
supports a program running on a heterogeneous network of machines.

Crystal was also investigated as an implementation language. Our experience with this
language indicates that it has a very steep learning curve. Since only a SPARCStation based
int.erprt is available (a compiler targeted to the iPSC_2 is being developed), we
concentrated on other tools and languages.

While PAWS is not a tool that produces an executable that will run on a particular
parallel target, it does provide the ability to compare how the same code would run on three
different machines representing three very different classes of architlctues: the CM-2, the
Multimax and the iPSC/2. We did try to run an Ada implementation of the second
experiment through PAWS to see how it would run on the different architectures. Given the
nature of that experiment, we would have expected the program to map more naturally to the
Multimax than to the Connection Machine. Unfortunately, PAWS was not able to process
all the Ada consmucts used in the program, so we were not able to get complete results. In
general, it seemed as though the ability to compare different architectures would be more
useful earlier in the development process, such as during design. One place where PAWS
would be useful is in determining an appropriate parallel target for an existing sequential
program that is about to be parallelized.

Faust was another development environment for parallel programs like CODE and
POKER. It supported C and FORTRAN, and a number of parallel targets. Faust initially
appeared very promising as it included an integrated editor, a parallelizing compiler and a
program monitoring tool for performance analysis. if it had one drawback, it was that while
it had advanced support for vectorizing optimization, it had little capability to deal with
programs that are parallel at a higher level In the end no experimentation was done with
Faust because the project had been dropped, and the unsupported system that we received
was incomplete, and impossible to run.

Finally, the most successful of our coding tools was CSTools from Meiko. It should
be noted, however, that this is a commercial tool, and most of the preceding ones are not; it
would not be fair to expect the University supplied tools to meet the same standards of
quality as a commercial product CSTools supports a number of languages, of which we
had C and FORTRAN. It is limited to a single target, the Meiko transputer board. We were
able to implement versions of all three of the experiments using CSTools. We did run into a
few minor problems. The Quicksort algorithm is normally expressed recursively, and the
first implementation followed this design. As a result, the transputer processors
implementing the final sequential quicksort overflowed their stacks when the recursion
levels got too deep. This was not handled very well by the tools, and it took some time to
determine the actual cause of the failure. In general, the error reporting on the transputers
could have been more helpfuL

We were also able to run a C version of the quicksort on an iPSC12 at Cornell. This
was based on the code developed using CSTools for the transputer. To retarget the program
to the iPSC/2 the calls to transputer specific library routines needed to be replaced with
iPSC42 specific library routines. Fortunately, the C libraries for the two targets are similar.
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It was also the case that most of the coding effort went into developing the first
version of each experiment. Subsequent versions of the program were developed in much
less time. Usually, variations on the original program involved simply making a few
changes, and then rebuilding and running the program to measure the new results.

4.6 Testing and Integration

There were no tools that supported testing. Testing for all three experiments consisted
of hand-writing tests and simply running them. Also, the nature of the experiments did not
allow any real evaluation of the tools' integration capabilities. In general we would assume
that the engineer would want a tool that made it easy to bring together independently
developed and tested pieces of a system. Each of the experiments was designed to be stand-
alone so there was no integration work to be done after it was tested.

No tools for performance analysis were received in time to use them for analyzing the
experiments. However, there are two tools in this area that are still worth looking at: PCN
and IPS-2. Of these, PCN is probably the most promising as it does run on the Sun4
workstation. It includes both an execution profiler, and a trace analyzer. IPS-2 was not
available for the SPARCStation, but it would appear to be a worthwhile addition to the
system. The key feature of this performance measurement tool is the ability to display
m se ts at different levels of abstraction. If running a program on a large number of
parallel processors, the user could easily be overwhelmed with the amount of performance
dam if there isn't some way to filter it. If it were ever ported from the VAX to a Sun host, it
would be worth investigating on the PEEP.

4.7 Supporting Technologies

This section introduces a number of supporting technologies which are useful during
more that one phase of the development process. Some of the tools mentioned above
support some aspect of these technologies. We also mention a few additional tools here that
support a specific technology without being specific to one phase of the development
process.

4.7.1 Prototyping

Prototyping can be used through out the development process. During the
requirements phase a prototype user interface could be mocked up to see if it meets
requirements; during design, prototypes help the designer make trade-offs between different
approaches. In particular, PProto lets the systems engineer experiment with different
process decomposition and data partitioning strategies to see whether the requirements can
be met, and if a particular strategy is better than the others. In some ways, the Id
specifications of the problems could also be looked at as prototypes of the actual program.

4.72 Modeling, Analysis and Simulation

Most of the tools support simulation is some form. PProto simulates running the
program as specified. The Id interpreter simulates running the program on an idealized

-29-



dataflow machine. POKER supports interfaces with a number of machine emulators. The
most important aspect of being able to simulate a program is the ability to make
comparisons. A particular simulation may not be able to predict the performance of the
program on a specific machine, but it should be able to predict the relative performance of
two simulations run using the same simulator. It is also important to have a simulator (or
simulators) that simulate all the aspects of parallel programs. For example, the simulation
capabilities of Id alone are not useful for predicting communication costs on a message
passing architecture. It is useful to have both types of simulators, that is, both actual
performance predictors like PAWS, and relative performance predictors like PProto.

4.7.3 Visuaiaton

CSNjmustrate supports a limited aspect of Hardware and Software Integration well,
and shows how simple tools can improve development in this area. CSNIllustrate simply
shows the layout of the transputer network, and the mapping of processes to nodes. This is
useful for determining the topology of the network, and determining if a particularly long
communication path exists between two nodes that communicate extensively. Intermetrics
implemented CSNmllustrate because the report generated by the CSTools program builder
contains so much information it was difficult to analyze. CSNimustrate presents the same
information graphically. However, this is also the drawback of CSN_llustrate, in that it is
dependent on the CSTools report.

TANGO is a tool that supports algorithm animation. For this project it was ported to
the transputer. TANGO had been used to show graphically how a particular algorithm, like
a binary search, worked. Since all TANGO does is display events as it receives notification
from the application, it appeared that it would work for parallel algorithms too.
Unfortunately, the nature of the program tends to sequentialize the algorithm when it is
animated. For example, two nodes are performing a process which in the animation is
represented as moving a square to the right. In the display first one 4quare, then the other
will move, rather than moving both at once. As a result TANGO is not very useful for
visualizing parallel algorithms.

4.7.4 Configuration Management

One aspect of software engineering that is missing from all of the tools is
configuration management. In some cases this is not a problem because configuration
management can be provided outside the tool. For example, a C source program for the
transputer board can be kept under RCS or SCCS (UNIX revision control systems). Some
tools would be much more helpful if there was an integrated configuration management
system. In particular, it would be useful to be able to track variations of a program, and to be
able to correlate a specific change to performance improvements in a specific area. It is also
possible that while recording the textual changes between two files, an external
configuration management system would miss a higher level change, such as recording what
standard transformation caused the textual changes.
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4.8 Discussion

No software methodology can be evaluated without usable tools to make experiments
in semi-automatic processing possible. The quality of too!s might to a first approximation
be expected to depend on the amount of research effort expended. The highest usability was
found in parallel languages, which are traditionally a prolific research area. Use of multiple
languages is likely to produce meaningful results by testing experimental hypotheses that
programming an algorithm in the right language or class of languages would enable the
algorithm to meet some requirements or system objectives more effectively than others. In
practice this has not been a factor. Genuinely new parallel programming languages are
being developed, but are only available as interpreters or on one particular specialized
hardware. A particular language like Id or Crystal can be used to prototype the problem, but
in order to produce a system that will run on a useful target hardware, a dialect of one of the
standard high level languages (Ada, C, FORTRAN) is most likely to be used.

Another active research area that has similar promise is compiler technology adapted
to allow the detection and use of intrinsic parallelism in sequential languages. The kind of
experimental hypothesis to be tested on these kinds of tools would be that some class of
target environments could be successfully and effectively utilized by programs in some set
of source languages compiled with each tooL Unfortunately, no such environments have
been successfully ported to the PEEP so far.

CASE tools and performance analysis tools are slightly less active research areas.
Some tools have been found partially useful, but incomplete due to less research activity.
CODE from the University of Texas at Austin supports a few "ordinary high level"
languages (Ada, C, FORTRAN) and compiles to several architectures via a special translator
(called a Translator Of A Declaration, or TOAD) for each languageltarget pair. It provides
an important capability, target architecture independence, that is essential for any parallel
software development capability. CODE also supports a well engineered graphical user
interface that allows the sequential segments of a problem to be stated in a way independent
of communication and synchronization mechanisms. It thus supports parallel programming
with MIMD flexibility and SIMD simplicity. CODE has a number of limitations,
particularly in the ability to control synchronization code effectively, but there is a new
version soon to be available that promises to improve this situation. It is an example of a
promising tool with enough limitations currently to be usable only for demonstration
problems.

4.&1 Tool Evaluation Summaries

CODE

Only partial results could be obtained with CODE. Small programs similar to the
supplied CODE demos could generate complete programs, but none were executed due to
not having the right target hardware. Sort and search code could be produced (but without
automatic replication, due to a bug already mentioned), but again could not be executed. The
new version of CODE, CODE 2.0, should fix most of the problems. Another favorable
aspect of CODE was that we were able to get some support from the developers, although
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they were not able to send us any additional TOADs. We did not evaluate ROPE, the
reusable component library associated with CODE. If it works as documented it does
appear to be a useful facility for finding reusable components by searching for keywords in
the description of the component.

CSNlllustrate

CSN-Mustrate is a very simple tool for graphically displaying the actual configuration
of the Transputer for a particular application. It is dependent on the format of the Meiko
tools configuration report; and had to be modified when the report changed in a new release.

CSTools

CSTools are a commercial parallel programming toolset for the transputer. It includes
a compiler, program builder, and debugger. These tools were quite effective for developing
programs for the transputer. Other commercial environments, such as EXPRESS, were not
available for comparison.

Id

Id capabilities improved over the course of our evaluation. Initially, it was difficult to
interpret the parallelism graphs because separate activities (such as insertion and lookup in
searching) could only be distinguished by repr ing. The addition of a capability for
associating colors with Id functions in the first Monsoon interpreter release in mid-1992
solved this dilemma. Now the interpretation of sources of parallel activity in parallelism
profiles is done easily.

An issue with the use of Id is its user interface, which can be using the shell, but for
debugging has to be under EMACS using Lisp commands. Both debugging and
visualization were a problem because any execution failures produced a Lisp interrupt. For
anyone familiar with functional languages who has time to learn a few Lisp library routines
and is willing to read interpreter code, this is not too much of a problem The Id
development team at MIT was quite supportive in helping us install the system and get over
initial learning hurdles. The documentation that accompanies the language also improved
with the new release.

*Lsp

Thinking Machines has a *Lisp simulator freely available. We had hoped that the
simulator could be used to develop a *Lisp program on the SPARCStation that would then
run with little or no modification on a Connection Machine. Our experience with the
simulator was that along with being undocumented, it only implements a subset of the
language and provides only a subset of the standard libraries. As such it is not possible to
use it to develop programs of a realistic size.
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PProto

With PProto, modeling of the image warping algorithm verified the communication
issues observed in the code-level Transputer experiments. The graphic display of
communication paths showed the bottlenecks that led to serialization of the graphic
communications in the series of experiments. There were some difficulties with modeling
the Transputer architecture due to the lack of enough database and library facilities to
develop the model incrementally. The model had to be read in from source every time, and
there was no way to distinguish additions related to prototyping different variants. This is a

serious problem for a tool that is supposed to support rapid prototyping, since it is easy to
lose information and even confuse the meaning of results without clear derivation
mechanisms. This is partially related to a technique such as Meta-Crystal for expressing

specific transformations, but shows that more general transformational derivation
approaches are important for really doing rapid prototyping effectively. This problem is not

specific to parallelism, and projects supporting this kind of refinement such as E-L at
Harvard are very important for parallel software development. It is possible that the
difficulties were related to the fact that the tool was only available for two weeks, and we
were not familiar with its capabilities.

Issues of human interface and capacity were enough of a problem that the utility of the
tool might be compromised for more than demonstration problems. With PProto, the
slowness of rebuilding and executing successive experiments was aggravated by poor
memory usage, and no way to clean up between partial builds means that the interpretation
of successive experiments is more difficult. Whether this would affect the validity of results
might require some expertise in the structure of the PProto interpreter, at least in the worst
case or using large models. Another drawback to PProto is the fact that it relies the ONTOS
object-oriented database system to run. This does not come with PProto and is not generally
already installed on a user's system.

Crystal

This language was not fully evaluated. We have a working Crystal interpreter on the
SPARCStation, but the compiler that is being developed was not available during this
project

PAWS

For PAWS, only the sample programs supplied with the tool successfully exercised
the tool. However, this was to be expected as only the alpha version of the tool was available
at the time. The user documentation for PAWS could also use improvement. At least one
environment variable necessary to run PAWS is not documented. A beta version of the tool
is now available, and work continues to add functionality and make it more robust.
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PCN

The PCN system did not become available until the end of the project, so no
experiments have been tried. However, its documentation is quite complete and indicates that
it is available for a number of platforms. It is definitely worth further investigation.

POKER

POKER was not fully evaluated as it did not run on the Sun4 workstation. It also
appears that no further work is being done on it, so it is not worth further investigation.

TANGO

Attempts to use TANGO calls in Transputer programs resulted in output that was not
capable of being used to display parallel activities on the target hardware. TANGO was
designed for animation of sequential programs, and would need additional support for
identifying parallel activities at the lowest level of data collection.

Other Tools

Interesting FORTRAN tools, such as PAT and FORCE, were tracked down and
determined to be available, but not pursued for installation. Free distributions of these are
available, and instructions for getting them are included with the PEEP.

A demonstration version of BALSA Lf, another animation tool, was also tried. BALSA
U is even more restrictive than TANGO in that it only runs and animates programs running
on the Macintosh.

The experiences with Faust demonstrate a problem of interest for PEEP planning
purposes. The problem is acquiring and installing tools, where the issues are first getting
access and then verifying completeness of the delivery. Acquiring Faust itself was delayed
for licensing reasons and was finally acquired almost two years after the start of the PEEP
effort. When Faust did arrive, there were no installation instructions (or documentation of
any kind) and support only for reading the tape. PEEP installers tried to understand how to
get it running by experimenting with it and looking at source code. However, the source
code did not seem to be complete so the effort was abandoned.

Inquiries were made on availability of other potentially interesting tools at the
beginning of the prototype PEEP project. These included SISAL, STRAND-88, DINO,
RAPIDE and Proteus, which are parallel research languages that may be useful in the
future. Other tools with good concepts such as Hypertasking, IPS-2, TOPSYS and Pisces
are not available on Suns, though all might be useful if they were eventually pored.
TOPSYS is a parallel environment wW- gpecial support for monitoring that would be likely
to be immediately useful if it could i e ngrated successfully.

An important aspect of tool : 'i:Wy for tools having some partially successful results
is the quality of description, documentation and support. Good support is essential to any
useful software tool, and includes many kinds of documents: installation manuals, user
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guides, tutorials and reference manuals, as well as consulting for problems encountered in
initial use and longer term exercise. This is not a level of support normally regarded as
feasible for university projects, but has been attempted by a number of the tool projects we
dealt with. The good news is that many tried to include some effort in this direction. The
bad news is that the results were mostly unsatisfactory.

Many tools have been discontinued. This includes some of the pioneering efforts in
parallel environments, such as Prometheus and PIE, which were always thought to be
important primarily for their influence on later work. Simulators, for example PARET from
Bell Labs, are very important in rapid prototyping and studying relative costs of processing
and communication elements, but tend to be used for the project that develops them and not
to get enough support to last beyond that project. Molecule was an important project to be
discussed in more detail in the methodology section. It was a classic research project, in that,
it successfully demonstrated a useful methodology and was comph ted with no perceived
need for any continued existence.

4.9 Methodology

If we look at the problem solving process for each of sample problems, the experience
reveals as much about the effect of traditional software engineering techniques as any
theoretical analysis. The important practical problems were problem partitioning,
understanding variants of sample algorithms, and combining compatible tools to use the
capabilities of each in describing a sensible development path.

4.9.1 Problem Partitioning

Both the sorting and searching experiments had the same problems meaningfully
partitioning the problem. For sorting, one issue was how to relate processors to parts of the
algorithm, as solved by the binary tree arrangement of the processors. For both problems,
the question of how to partition the input effectively was solved only after some initial work
was done to understand the communication costs. This is typically a goal of simulation
studies. Even had a simulator been available the modeling could easily have taken as much
time as the communications coding-, still once code was available, additional experiments
could be performed more quickly by local modifications of the existing programs. It is
worth noting that the second implementations succeeded quickly partly due to this kind of
reusability. The methodology this reuse seems to relate best to is that of CODE, involving a
database of sequential program segments that can be connected under programrner control
by data flow requirements and synchronization constraints.

4.92 Combining Id, Crystal and CODE

All three problems had some of the same methodological difficulties. While useful in
verifying ideas about intrinsic parallelism, the Id programs provided no insight into the "real
problems" of organizing the computation to control cormmunication and synchronization
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costs. This is where a combination of Id, Crystal and CODE will be die most help. Once an
algorithm is demonstrated in Id, it can be transliterated to Crystal and decomposed using
domain mappings into "agent" subproblems. This mapped program can then be input to
CODE to separate sequential activities from synchronization methods. Then TOAD's will
translate the code to the appropriate target architecture.

Actually generating the code for any of the applications by this process is still only
possible in principle. While the Id programs can usually be demonstrated to work
essentially as expected, the process of functionally compiling them by Meta-Crystal like
transformations is going to have to be done by hand for the foreseeable future. Meta-
Crystal, still under development, is not available for even initial evaluation, and cannot
therefore be expected to be of production quality, as the experience with other tools
demonstrates. Transliterating the iterative code to concrete languages such as Ada, C and
FORTRAN is not especially difficult. Finally, CODE itself is still in a process of evolution
and may be approaching the level of code development capabilities necessary for continued
use. CODE 2.0 will be used for project work in higher level classes at the University of
Texas this fall, and should be available shortly afteards. Also, TOAD's are not
completely trivial levels of translation, but can generally be developed by graduate level
people in a few months for a particular target and rum-time system.

This approach is basically the same as the Molecule paradigm. Molecule was a
language project where the key feature of the language was the ability to specify the
program at different levels of abstraction. In the highest level of abstraction, the program in
expressed in target-independent dataflow semantics. In the next level of abstraction the
program is expressed in terms of a set of primitive parallel operations that are appropriate
for a particular type of architecture. Finally, the program is translated to a specific source
language for which there is a compiler on the target hardware, such as C for the iPSCV2.

4.9.3 Surveyed Projects

The original expectations about these projects were actually quite limited. Typically
university researchers are very happy about remuts that demonstete the validity of an
approach or the utility of a tool concept and organization and do not regard it as within their
province to worry about the viability of particular implementations. A large number of
projects included in the original swuvey of available tools and techniques were exactly of this
nature.

A typical one was the Molecule project, which demonstrated the feasibility of
beginning with dataflow level notations and using fairly well understood transformational
and compilation techniques to produce executable code. This was the paradigm that seemed
most like existing software tool and support methodology in the sequential world. What a
casual reading of the literature of work on traditional languages and development
environments suggested was that the Molecule paradigm was a practical possibility, using
mostly available software technology. Evolutionary language and compiler approaches that
supported aspects of this model were the FORTRAN PICSES and FORCE methodologies.
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Other examples were the evolutionary variants of traditional sequential languages and
run-time support techniques from Ada and Concurrent Pascal (and various Concurrent C's)
to FORTRAN 90 and Schedule. From the environment world, Rn and Faust initially
seemed to demonstrate that enough parallelism could be detected and incrementally
improved upon by combinations of programmer supplied, static, and dynamic analysis to
make the gradual improvement of essentially sequential techniques a practical alternative.
Again, it turns out Rn and Faust have been primarily prototyping techniques and the
engineering of real development environments on this basis has been essentiaUy
discontinued.
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5 Conclusions

In this section, we summarize our findings and conclusions. These are organized as
PEEP requiren-ts, -- ecommendations for the evolution of the PEEP, and a vision of a next
generation PEEP system.

5.1 Requirements for the Software Engineering of Parallel Systems

This section is organized into life cycle requirements and requirements on supporting
technologies, following the structure of the revised tool/problem solution matrix (section 2).

51.1. Life Cycle Requirements

Our survey and experimentation have led us to identify the following reqr ts for
any system supporting the software engineering of parallel systems. Capabilities needed for
parallel software engineering, based on our Survey and Experimentation include these:

"* architecture-independent program notation for problem specification (e.g., using a
dataflow language such as Id),

"* ability to interpret programs to determine processing and ommunication costs, as
well as to verify correctne of algorithms and adequacy of synchronization
methods (e.g., using a simulator such as PProto),

"* architecture-dependent evaluation methods to determine behavior on different
architecture classes; this can include languages supporting various classes of
processing and communication operations, as well as support for synchronization
at various granularities (e.g., using appropriate software development techniques to
develop and execute various algorithms on appropriate hardware, as partially
supported by CODE/ROPE, or using architecture simulation as supported by
PAWS),

"* ability to relate programs in different notations to allow all kinds of architecture and
target machine dependencies to be tried for programs implementing the same
algorithm (e.g., as done by Meta-Crystal operating on Crystal, or as done by
human beings using mome conventional tools),

"* determination of algorithm speedup as a function of number of processors (e.g.,
doing evaluation on multiple targets directly),

"* ability to evaluate performance by measuring execution without stopping or
interfering (e.g., as attempted with TANGO, and as supported by event-based
debugging techniques such as MDP and Dalek).

These capabilities directly address the various phases of software development as
follows:

"* Requirements Analysis using iterative specification and simulation techniques such
as Id, and rapid prototyping for requirments verification,

"* Architectural Design using refinement and transformation methods, as well as
modeling and interpretation techniques that compare multiple execution such as
PAWS and PProto,
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• Low-Level Design and Coding using multiple languages and capabilities such as
CODEWROPE; and target support software for organizing, compiling, building and
testing architecture- and target- dependent code and modules,

* Visualization and Performance Analysis using tracing and monitoring techniques
such as those supported in modern parallel debuggers, and in PCN's monitoring
facilities.

The remaining areas of the Revised Matrix are covered by tools that are not really
unique to parallel systems and hence were not dealt with in connection with the PEEP. A
few areas, such as completely non-interfering monitoring and automated system selection
involving tradeoffs of hardware, software, OS support and run-time libraries, are problems
that are currently beyond the state of the art and cannot really be dealt with under the PEEP
philosophy of using existing tools and capabilities. As research progresses in monitoring
and abstract modeling techniques (e.g., PAWS-style modeling at multiple levels of
intpretation), support for these capabilities should be incorported into the PEEP.
Similarly, once more languages are generally available on parallel machines, language
selection will merit further automated support.

For the purpose of prioritization, we analyze capabilities into three categories:
essential, recommended, and nice-to-have. An essential capability must be present--one
can't develop a program without it. Language translators (compilers and linkers) fall into
this category. Reconmended capabilities provide a marked improvement to the parallel
software development process, but are not essential to development. A nice-to-have
capability may be useful for a specific problem, but is neither essential nor generally
recommended for parallel software development.

As the experiments on the Transputer attest, none of the tools we investigated are
really essential. The support for parallel programming provided by the
compiler/linker/debugger toolset of the Meiko CSTools, and similar vendor support
software for parallel computers meets basic ts. Thee are many limitations, such
as only a few available languages, insufficient buffering capabilities for effective

tons, or uneven support for various synchronization mechanisms. However, the
lack of other capabilities can be compensated for by more programming effort. Without
additional programming tools, parallel programs will be developed through trial and error as
was done in the initial experiments.

* Recommendaion: Other commercial tool sets, such as EXPRESS, should be
systematically evaluated.

Due to budget on ons, other commercial tool sets and languages were not
evaluated as part of this study. Providing alternatives to CSTools should be a goal of the
PEEP, and any alternatives will need to be investigated prior to inclusion on the PEEP.

Thus, most parallel programming tools as investigated by the PEEP are rated as
recommended, though in varying degrees. Parallel languages and compilers capable of
optimizing parallel loops are recommended because they support software quality factors
such as portability, reliability and maintainability without sacrificing efficiency (assuming
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that the same language is available on multiple targets-not currently the state-of-the-ar. In
the future, Ada 9X may help in this regard, by providing a language standard that
incorporates support for concurrency and distribution.)

Run-time librry capabilities, such as micro-tasking and broadcast facilities, are also at
this level of importance. Once a f!.w languages supporting concurrency and basic
communnication mechanisms become available, more languages become just nice to have.
Similarly, once an adequate development method is supported, more tools provide a kind of
convenient redundancy that does not significantly improve the power of the platform.
Parallel debugging and the current level of visualization support as provided by some
vendors are tools of this kind--any one tool will suffice. Almost all the other tools
considered for inclusion in the PEEP are also of this kind. This includes additional
languages and all the various tools for modeling and identifying parallelism that were not
fully evaluated.

We conclude that the capabilities of PProto and PAWS are recommended since they
are unique in addressing modeling issues related to rapid prototyping and architectural
comparison. In addition, some sort of high-level data flow specification language would also
seem to be needed. Of the languages we tried, Id was quite successful in this regard,
although another dataflow language with similar support would probably serve as well.

Thus, Id, CODE, PAWS and PProto are recommended techniques. A tool supporting
transformation techniques similar to Meta-Crystal is also recommended, as is sufficient
monitoring capability to do basic performance evaluation. More languages and tools to
assist in such activities as visualization, design data capture and transformational
configuration control including derivation histories are nice-to-have (though there are some
researchers who would claim such facilities have always been essential). Ordinary nice-to-
have tools are the myriad small tools that can help with documentation, verification,
description, and mneasurement of software. One example is the CSNmIllustrate tool
developed for use with the Meiko tools to depict code usage on the Transputer. The
following table summarizes the conclusion for each tool:

Tool/Language Conclusion
Ada9X Recommended
CODE/ROPE Recommended

ysta Nice to Have
CSN_Mustrate Nice to Have
CSTools Essential

(or em valent)
Faust Not Recommended
Id RFcommende
*Lisp Nice to Have
PAWS Recommended
PCN Recommnded
POKER Not Recommended
PProto Recommended
TANGO Nice to Have
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* Recommendation: Work on PProto and PAWS should continue, and production
quality versions of these tools should be integrated into the PEEP

These two tools fit well with the methodology we have proposed, and there are very
few efforts in the research community that offer comparable capabilities. We find these two
tools to be of relatively high quality in reliability, usability and documentation, as compared
to the spectnm, of University tools we evaluated. They are not robust, production-quality
products, however. We believe that Iringing these tools to a state where they can be reliably
used for large-scale programs with a minimum of support from the developers should have
as much funding priority as further research on the underlying technology.

• Recommendation: New developments in CODE, Id, Ada 9X and PCN should be
followed for new developments and integrated into the PEEP as necessary.

The field of parallel computing is expanding rapidly. It will be important to integrate
new tools into the PEEP for evaluation as they are developed. Of the tools evaluated, Id and
CODE are two projects where the work continues, and is developing interesting technology.
Of the languages Ada 9X and PCN should be followed. With Ada 9X, the Ada language is
improving its support of shared memory multiprocessors, and adding capabilities to provide
support for distributed, or message passing architectures. PCN has some of the more
advanced support for program monitoring, and good support for integrating existing code.

51.2 Integradon Requirements

For the prototype, we have limited the amount of "wrapping" required to incorporate
a new tool into the PEEP. Tool integration has been aided by the open systems framework
provided by UNIX's process model and X's client-server modeL Future versions of the
PEEP should maintain this open systems' strategy, recognizing that the frameworks will
evolve beyond what is available today.

In the area of common services, the object-oriented programming model has identified
promising processing techniques in such traditional activities as databases and language
processing. Concurrent development consisting of related processes cooperating through
standardized interfaces is inherent to object oriented techniques as well as to many aspects
of CASE technology. Recent trends in software development envinments toward what are
generally termed software process models indicate a possible direction fcr future PEEP
growth. Taken together, all these kinds of research can be thought of as suggesting ways to
imprve compiling technology, to facilitate common tool interaction, or to make use of
object oriented process control notations. Which technique or point of view would be best
for the PEEP is the long term issue; achieving effective tool interaction in some way for the
short term is also a serious problem.

Within this evolving framework, it should be possible to increase the degree of tool
integration by defining uniform data and event formats.
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Another aspect of integration is Configuration Management. This is crucial both for
maintaining product consistency within large development efforts, and for maintaining a
program and its variants within exploratory programming. In using PProto, we observed
that prototypes would be easier to build if there was a mature cut-and-paste facility. As we
discovered, one often wants to replicate a given node or graph fragment to use elsewhere.
However, this is hampered by the need to specify input and output ports on a node (at all
times). It would be helpful if there was a way to specify absolute and relative ports (as in the
cells of a spreadsheet). Absolute ports would always refer to the same place, even when a
node is duplicated. Relative ports could refer, for example, to an adjacent node.

A Configuration Management system should allow users to control multiple versions
of a number of diverse kinds of entities and the relationships among them. Entities may be
at any granularity within the system (as the above example suggests).

Throughout the SEPA program we experienced a need for better automated
configuration management support. Much of our work on the sample problems was
approached by making slight variants on an initial program, re-building, re-testing, and re-
measuring performance. This cycle was repeated many times for each problem. There were
no suitable facilities for isolating the differences between successive versions of the
programs, and correlating the changes with the modified test cases or new performance
results. Meaningful relationships between the changes and the performance impact of those
changes had to be established and tracked by hand.

Recommendation: A comprehensive coMIguration management facility be added
to the PEEP and integrated with all the tools that support our recommended
methodology.

The "Artifacts" system developed for DARPA's ProtoTech program would make an
excellent starting point. This system maintains a network of fine-grained arbitrary
relationships between source programs, test cases, results, and any other data in the system,
and allows the automatic triggering of arbitrary tools upon changes to any of the data.

5.2 SEPA Long-Term Plan

This section contains specific recommendations for PEEP evolution and
recommendations for further work by Rome Laboratory in this area.

52.1 Tool Enhkucnents

To use existing tools, the following improvements are needed-.
1 The ability to map Id programs semi-automatically to decomposed subproblems.
A tool to do this would consist of lists of data and control structure transformations
together with pre and post conditions needed to apply them. A method of supplying
additional information about program dam and operations, as well as intended
architecture, would be one of the main interfaces for this tool. The effect would be
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to allow the user to program a formalism similar to Crystal to allow Meta-Crystal
transformations appropriate to the possible architecture to be applied. The output
would be a Crystal-like program with enough architectural specificity to be
translated to a concrete language such as Ada, C, *LISP or FORTRAN without any
actual target dependencies, but with enough architectural dependence to be
compiled without losing parallelism.

" The ability to keep derivation information in ROPE. Information on the user-
supplied characteristics and transformations used to produce the concrete code
would be kept with the program in a ROPE-like library system.

" More flexible synchronization conditions in CODE to allow better synchronization
using target compiler capabilities. CODE 2.0 is supposed to support guard
expressions which will do this.

" More TOAD's for more targets, particularly to support C for popular MIMD
machines. There are supposed to be ways to get these with minimal (two month)
effort. These could be developed as needed.

"" The ability of target linkers and run-time monitor facilities to support intelligent
monitoring and tracing. These already appear to have been prototyped in the
TOPSYS project successfully; Meiko and other hardware vendors appear to intend
to support full monitoring and tracing eventually. It is also possible this could be
added to PCN.

Tools to supply more life-cycle coverage would include:
"* Morm languages, such as C* and Linda. Ultimately the goal could be to allow any

parallel language to be used on the PEEP. These could be procured individually as
needed.

"• More static and dynamic analysis tools, particularly in the support of Testing and
V&V. These could be taken from existing DoD supported efforts and tailored to
the PEEP, or procured individually as needed.

"• More advanced design tools such as Meta-Crystal and those supported by the
DARPA Common Protoying Language effort, including Proteus in the area of
languages and E-L in the area of transformational design support.

The issue of appropriate and useful documentation for user friendly access to the
results of applied research projects needs to be kept very prominent. If possible, there
should be follow up on the Faust experience to determine if there is any way to avoid the
loss of the results of such an interesting project. In particular, the Sigma editor and the
IMPACT monitoring design using automatic probe insertion would be important
capabilities in the long term PEEP if they could be recovered.

5.2.2 PEEP Evolution

Recommendation. The parallel software development methodology evolved during
the course of the SEPA contract should be supported by a well-integrated set of
robust tools, and used experimentally by organizations outside Intermetrics to
validate our assessment of its value
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To do this, the tools must first be made more robust, and reliable, and should offer a
consistent user interface. They should then be integrated into the proposed methodology.
This could be achieved through the development of a composite Users Guide that presents
the methodology and the tools in an integrated manner.

5.2J Sustain PEEP Technology Base

Recommendation: A mechanism should be created for capturing and preserving
the software that results from University research in parallel processing. When a
tool is procured under sponsored research, there should be requirements on the
delivery of adequate installation instructions to get all components running, and
on the existence of an introductory user manual with examples. These systems
should be archived with all such materials.

The goal would be to preserve sufficient information to allow both meaningful
evaluation and estimation of the value of continued support or extension. One clear and very
disappointing conclusion of our work is that much promising University software is being
lost. Parts of the very promising Faust system were not included on the source distribution
tape, and could not be located by the researchers who remain at the university. The Molecule
project had ended and the software was "put to rest."

Most researchers see published papers as the primary output of their work, and these
papers are properly archived and readily retrievable. The software they develop, however, is
not stored or catalogued in any systematic way. Often, all trace of a potentially valuable
software system is expunged from storage upon graduation or transfer of the individual
researcher.

Although little of this software is of production quality, it is nonetheless a very
valuable resource. It can be used for more detailed understanding of the ideas, for
productizing by third parties, or as a source of reusable components.

We believe that it would be a major benefit to the parallel processing community if a
mechanism were established for capturing and preserving these software assets. Simply
indexing the software against the published papers describing the research would be a
sufficient retrieval mechanism. What is needed is a centralized collection activity. Provisions
should also be made in government research grants to support this archiving.

We do not propose to change the intellectual property tights to any such software.
The existing legal system for determining rights and ownership is workable. It may require
negotiation with universities but this can be done. However, without assurance that the
software still exists in a usable form, this negotiation process is not worthwhile.

We believe that Rome Laboratories could fill a very valuable role by providing such a
central archiving activity, at least for the products of government-funded University research
in parallel processing.
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* Recommendation: Further research should be encouraged in specific areas where
the SEPA program has been unable to find adequate existing tools

We believe that TOADs should be created for more popular parallel archituctures
using the CODE system. Better tools for the visual display (animation) of the dynamics of
parallel programs in execution should be-developed. Tools for testing parallel prograrms
should be created that will handle the non-determinacy inherent in these programs. Tools
for designing parallel programs (before coding and independent of prototyping), and
analyzing the requirements (independent of the design) are generally missing from the field
and deserve more attention.

* Recommendation: Systematic independent evaluation of emerging technology for
parallel software development should be continued

Reports on the development of new tools and techniques are being published
continuously. We could have easily spent all our time surveying the literature and keeping
up with the new developments. In terms of this project it was necessary to stop collecting
data at some point, and start hands-on evaluations. Based on the hands-on evaluation we
have found that the published literature on new parallel software tools and methodologies is
not a very suitable basis for evaluating their usefulness. All papers report success. The
usability of the languages, tools, or methodologies by third parties cannot readily be
established by reading the papers. Further programs like SEPA, in which an independent
third party installs the tool and uses it for simple problems, will help to calibrate the
applicability of the new ideas that have emerged since our survey.

Reconmmendation: For the evaluation of the applicability of parallel software
development techniques to command and control, a command and control bench-
mark should be developed.

Most benchmark and example programs used for evaluating parallel tools and
architectures'we scientific and mathematical applications. As such they do not provide a
good measure of such tools and architectures for command and control. A sample
command and control problem would need to include aspects common to many C2

applications such as real-time processing, large database processing, image processing, and
simulation.

In order to provide a realistic sample, even a "small" C2 application would be quite
complex. As a result, a successful C2 sample would need to be well documented with both
requirements and design as well as a user's guide. A full set of input data would be required
along with documented expected results. A retargetting manual would also be needed for
rewriting the application in languages other than the initial implementation.



5.2.4 Next Generation PEEP

Using the base technology of a fully populated, highly functional PEEP, it is possible
to take the next step in supporting high performance parallel computing:

Recommendation: that the PEEP be extended to support "architectural
supercompiling"

The supercompiler concept has been developed over the past decade and was named
by Wolfe in 1982. It involves the application of uniform deductive methods from
verification and inference research. Compiling with a supeInompiler is the selective
application of transformations to a program representation that is successively refined until
it can execute on the desired hardware. Supercompiling provides a way of looking at the
cooperation of limited transformation tools on a platform such as the PEEP as a kind of
non-deterministic program mapping that resembles compiling.

The experiments we have conducted have led us to believe that the best long-term
opportunity for automated support of parallel software development is implementation of
the supercompiler notion. This follows from our recommended methodology: starting
development with very high-level languages, such as Id, and refining programs in stages
through more concrete languages, adding information about details of the target architecture
in the later stages.

The effectiveness of the proposed methodology and the selected tools would be
greatly enhanced if it were possible to mix lan- iages at any level of this refinement process.
Unfortunately, most of the tools that are availabk, at present are tied to single languages, or
small sets of languages.

One of the most useful concepts in the field is the use of human-guided, machine-
facilitated transformations to reduce the higher-level, architecture-independent
representations of programs to concrete form. This is the supercompiler notion.

At present, the Meta-Crystal system being developed at Yale comes closest to
providing the desired mechanism. However, Meta-Crystal is tightly connected to the Crystal
language, which does not meet the needs of most parallel software developers. We believe
that the idea of human-guided successive transfo-mations is too important to be linked to a
single language. The PEEP should provide a framework for an evolving library of
transformations that can be applied to programs written in any language.

The supercompiles concept for parallel applications requires a suite of language
translators and other tools that operate on a conmon internal representation of programs.
Developing such a suite of tools will be a major undertaking. It will require the cooperation
of government, academia, and industry to create a sufficiently broad set of languages,
analysis and simulation tools, and transformations. The first step must be to define a
common representation that can be accepted by all parties.

Industry is not ready to accept a universal low-level representation for programs.
SIMD vendors will not accept a standard that is, or eems to be, strongly oriented to MIMD
architectures, and vice-versa. MIMD vendors who provide a shared memory model will not
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accept a standard that is strongly oriented to message passing. Even if a consensus on low-
level representations could be forced, it might be harmful to the further advancement of
parallel processing technology - whether MIMD or SMD, Shared Memory or Message
Passing, Vector, Dataflow, or other architecture classes are best is still controversial. This
should be resolved by open competition in the marketplace.

However, we believe that a high-level, architecture-neutral representaton could be
defined that would be acceptable to all parties. In our experiments under the SEPA program,
we have found that a high-level dataflow representation of programs (using Id) is readily
mappable to all classes of architectures. FPurt more, the tools that would be needed to map
programs represented at this level to low-level representations for specific architectures are
the very facilities that comprise a supercompiler system.

DARPA's ProtoTech program has developed technology that addresses this need-
the Kernel CPL multi-language environment framework. This framework will need
adaptation to meet the needs of the full range of parallel processing machines, but its
effectiveness as a supercompiler framework for sequential languages has already been
demonstrated, particularly by the work of Yale University, Intermetrics, and Software
Options Inc.

ProtoTech has also developed a formal, mathematically oriented language for
prototyping parallel software, Proteus. Although Proteus is tied to shared memory
architectues, it merits further investigation as a member of a family of languages to be
supported by the PEEP. There are many parallel programming languages and prototyping
tools, so implementing Proteus on the PEEP is not of high priority, but the framework
provided by the Kernel CPL technology is unique and very important

The PEEP should be the framework for this integration. The experiment could be
performed before adding the supercompiler technology discussed above, or could be
deferred until that technology is present in the PEEP.

The necessary "productization" of the required tools could be done by enlisting the
cooperation of the original developers or their funding agencies, by separately contracting
with those organizations, or by having a PEEP follow-on contractor work with their source
code. We expect that the latter method would yield more immediate results, but that
establishing more mechanisms for helping university researchers to produce robust tools
would be of more long-term value.
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A. Experiment Descriptions

A.1 Experiment 1: Exploiting Inherent Parallelism

Parallel sorting is a classic problem. Very good sequential algorithms exist, such as
radix exchange, that have essentially no inherent parallelism. For applications with very
large quantities of data, or severe timing requi-rments, parallel approaches are indicated.
Hardware methods with the necessary stochastic properties have been extensively studied,
and are one solution. In principle, these could be programmed in software, but probably not

efficiendy except on dedicated mesh architectures.

Assuming that dedicated hardware is infeasible, traditional methods of sorting may be

used with significant parallel speedup. This involves choosing an algorithm with significant
intrinsic parallelism, or using a divide-and-conquer approach to partitioning the data.
Techniques that divide the input into as many chunks as there are processors, sort each
chunk, and merge the sorted results are good candidates for theoretical algorithm speedup,
but are effective in practice only if communication costs can be kept relatively small. In a
mixed approach, individual processors can use fast sequential algorithms and less refined
communication techniques that are less optimal than programmable meshes or systolic
arrays. This is the area where code replication techniques are useful on MIMD
architectures.

We chose Quicksort for our experiment. Parallel sorting has been studied extenively,
and other more parallel sorting algorithms are documented in the literature. However, our
intent in this experiment was to try to parallelize a standard sequential algorithm with the
tools available. Certainly, if we wanted the best possible results in terms of performance a
different algorithm would have been chosen.

Our parallel sort routine involved a straightforward attempt to use the intrinsic
parallelism of Quicksort in a dataflow language. Its formulation in Id selects an arbitrary
element (which can be the first) and divides the input into two parts, consisting of elements
that are less and greater than the selected one, and then applies the same function to the
parts. Quicksort's basic formulation in Id is as follows:

(qsort lesseq-a) ++ a: (qsort greater-a)

where "++" is a list concatenation operation, ":" is a LISP-like cons operator, "a" is the
selected element and "lesseq-a" and "greater-a" are the parts of the input values that are
recursively sorted by Quicksort.

The strategies used for sorting are described in section 4.

A.2 Cooperative Concurrency

Searching algorithms are also well studied. Even more than in sorting, fast searching
methods rely on techniques for organizing data that are inherently sequential. One
parallelization approach would be to do a fast parallel sort, and do all searching using a
sequential binary search algorithm. This approach has serious problems with the insertion
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of new entries, making it inapprpriae in real-time applications. Using multi-tasking to
synchronize insertion and deletion by dividing input into chunks and merging similar data is
as valid a technique as for sorting. However, merging is somewhat more complicated and
expensive when searching since the point where the insertion takes place has to be protected
until the merge is completed. Merging insert (write) functions with lookup (read) functions
introduces synchronization issues. The intent of the second experiment was to investigate
the synchronization issues associated with this type of algorithm. One simple way to
achieve this is to associate parallel processes with parts of data or the memory they access.
This is a powerful way to use multiple processors in real-time searching. It can be
implemented like a multi-tasking system and adjusted dynamically using appropriate
scheduling, but is also very adaptable to mid- and fine-grain parallel architectures.

A basic idea for such a search is to treat n processors as searching through a multi-
threaded list, where parts of the list can be global and parts more local (shared by some or
even non-shared). Each segment of the list can be treated as entered by a hash function that
selects which buffer and processors to use. For local memory, the processor is determined
by selecting its address space. For shared memory, synchronization needs to be associated
with the insert actions. Processors could be differentiated on the basis of whether they have
access to shared memory, and would have slightly different lookup and add actions. This
would be an inherent difference between MIMD and more uniform SIMD architectures.

In its simplest form, a SIMD algorithm would probably be roughly a recursive Id
program with two functions: one to add a value to the list based on some key that is a
function of its value, and the other to lookup a value. There would be some main or
environmental process adding values, and eventually multiple clients trying to access the
values (in order to verify and/or operate on them). The Id functions we tried were:

type struct-elem = (record
key = int;
value = *0);

def lookup key struct =
(case struct of
nil = nil;
I (struct-elem:rest) =

if (matching-key suruct-elemkey key) then
value struct-elem.value;

else if (possible-key struct-elem.key key) then
value = (lookup rest key)

else value = nil;
in
value));

def add new-elem struct =
(case struct of
nil = new-elem;
I (struct-elem:rest) = {
if (possible-key struct-elem.key new-elem.key) then

(struct-elem: (add rest new-elem))
else (struct-elem : (new-elem : rest ));
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Here, "struct" is an Id I-structure, built by "add" - "add" is written as if it returned a
structure when what it really needs to do is insert into or append to the global I-structure
from a controlling process At the simplest level, "add" will insert elements whenever it
encounters a position that is vcant. This can be thought of as encountering an end of tape
marker and writing the next element. The keys can be thought of as relative addresses which
match when they are equal and are possible matches when they do not exceed the last used
address.

A.3 Target-Independent SIMD

The image warping algorithm uses map data containing a height and color for a
rectangular area and determines the data used for creating an image viewed from a particular
angle that looks 3-dimensional to the viewer. The basic "Floating Horizon Algorithm" is as
follows: if we have elevation and color data on, for simplicity, a N by N grid, we can use the
floating horizon algorithm to display that data given a viewing angle of phi We may think
of the data as height function, h, mapped into 3-D space by:

Z(ij) = h(X(i),Y())

whereX(i)=iY(j)=j,ij=0, 1 ..... N-1

f the image is to be viewed at angle phi (the top view is given by phi--90), the
projection is given by:

(XY,Z) -> (X, Y * sin(phi) + Z * cos(phi))

viewing

plane

phi

o541 Y

Given a cross-section as shown in the diagram, the height on the viewing plane of a
particular point (Y, Z) is calculated using the equation above. If the calculated height is
greater than the current horizon, then select the point, and make it the new horizon.
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Otherwise, the point is below the horizon as viewed from angle phi, and it is ignored. This is
done for all Y's to produce one column of the projected image. The same calculation is
done for all columns (i.e. X's)

The pseudo-code for this algorithm may be expressed as:

procedure DisplayHeightField (Z, C, N, phi) is

arguments:
Zf[fI indexed square array of heights
CI[] indexed square army of color
N number of elements in a row/column of Z
phi view angle

variables:
Im[O] indexed square array that represents the rendering

iAj,k integers
p,pO projected heights, screen y-coordinates
horiz integer

function P(xy) is
begin

return int[(y*sin(phi)) + (z*cos(phi))];
end P;

begin
for i in 0..N- 1 loop

- reset horizon for new column
horiz :=0;
forj in 0..N-I loop

- calculate projection for point
pO:= Pa, Z[i][j]);
p:=pO;

-fill in image if above horizon
- and fill in intermediate pixels
while p > horiz loop

In[il[pJ = Cil][J
* p=p-l

end loop;
- save new horizon, if necessary
ifp0 > horiz then

horiz := pO
endif;

end loop;
end loop;end-,

Note that we simplified the data partitioning by restricting the directions from which
the image could be viewed, and by displaying an orthogonal view, rather than a perspective
view. These simplifications do not change the basic algorithm, just the amount of data
required by each processor.
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In implementing the image warping algorithm, we went through four iterations. The
first implementation, shown in the figure below, resulted in poor performance. As individual
pixels were sent firm the trasnputers to the display, there was a severe communications
bottleneck between the two machines.

~read in image

data. 
Display (X-Server)

serve'. This had better performance, but there was still contention for the communication
line to the X-server. As a result the trans-puter network would intermittently hang, and the
data on the screen was sometimes corrupted. Since not much changed between the two
implementations it took very little time to implement the second version based on the first.

The third implementation, shown below, added daisy chaining between the tnsputer
nodes to eliminate the coipted data. This was generaly successful, however, the transputer
network would still hang on occasion as the single-threaded X-server on the display could
not handle the calls coming from multiple uansputer nodes. Again, since the code was
changed vety title, it took very little time to implement the third version.

Host.

•w•...=•,= rea d in imagem IMM MMII



read in image

Display (X-Server)

create X..__
widgetsmtIag draw n1ructures

The final strategy was to eliminate the X calls from the tra,-sputer nodes entirely. This
involved learning the XDR utilities for exchanging data between the transputers and the
host. As a result, it took somewhat longer to implement this version of the algorithm than
the previous two variations. However, it was worth the effort as this produced the most
reliable implementation, and it was almost as fast as implementation three.

Host

Thea owin tmable shwIh aiepromance ofterdiferntipenaios

I e data XDR
S~~dat• _-

Tasue drw Display (X-Server)

create X

widgets da

The following table shows the relative performance of the diffe:rent implementations.

The measurements given are seconds; the first number is the elapsed amount of processing
time on the uter, the second is the total time which includes ssing on the host.

Impl.,1 IImpl. 2 Impl. 3 Impl. 4

Transputer time 93 13 3 2

Total time 93 15 7 9
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B. Tool Summaries "Data Sheets"

This section contains the descriptions of all the tools and environments surveyed. It
includes both tools that were included in the original survey report and other tools that were
discovered later. It is organized into parallel environments, FORTRAN parallelism support
tools, special purpose tools, and parallel languages. All tools are described in the present
tense in terms of their capabilities even though, as discussed earlier in the report, a lot of
these projects have ended, and the tools are no longer available.

Parallel Environments

CODE

Developed at the University of Texas, the Computation-Oriented Display Environment
(CODE) provides high level parallelism support for a parameterized range of target
architectures. It includes a graphical editor and monitoring facility for program graphs of
schedulable units in (currently) three program languages, FORTRAN, Ada and C. The
CODE effort is closely integrated with another environment project, the Reusability-
Oriented Programming Environment (ROPE) at Austin. This shares the program database
with CODE and allows intermixing of program components developed under either system.
The program graphs are hierarchical compositions of other units in either the graph
language or the base language. These four kinds of units are: controlling units, filters (used
for conswAints), dependency lists (involving structures of related units), and subgraphs.

Target architecture models are described in a TOAD (Translator Of A Declaration)
which includes synchronization information and target configurations. TOADs exist for
Ada, FORTRAN, and various extensions of C, for target environments running on a variety
of parallel machines, including a Sequent Balance, a VAX cluster, a Cedar (clusters), an Intel
Hypercube, and a Cray X-MP. Some executable FORTRAN modules that have been
published use the Schedule execution environment for synchronization operations,
indicating that this approach is amenable to supporting common target environments in a
natural way.

The development path using CODE is to edit a graph of program components called
Schedulable Units of Computation (SUC). This is done under control of an X-based menu
system with fifteen icons for drawing graphs of SUC relationships. One icon supports
general attribute editing actions and thus provides a fully non-linguistic model of data flow.
Code in the SUCs themselves is in one of the supported languages, Ada, FORTRAN or C.
Input data dependencies are modeled as input parameters. Output data dependencies can be
output parameters in Ada, or read-write parameters in FORTRAN and C. Mutual exclusion
uses Ada tasks or global variables synchronized by appropriate language extensions for the
supported target. For FORTRAN, one possible informal standard is the Schedule runtime
interface as initially done for the Encore Multimax at Argonne Labs. The Cray and IBM
extensions use the multitasking supported by the vendors' FORTRAN-77 compilers. Any
micro-parallelism features can be used by programming them into the code for the SUCs.
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The main shortcoming of this approach is that peculiarities of the target language and
architectre are exaggerated. The lack of portability in FORTRAN is made explicit in the
need for a different TOAD for every combination of target and operating system. The
optimization problems of Ada tasking makes synchronization very expensive. Each node
depending on exclusive access to any data is modeled as a separate task. This situation
should be considerably improved by using Ada 9X protected operations. Exclusive access
to shared data can then be implemented with protected operations. CODE should be
changed to support this improvement if Ada 9X is supported.

CODEs separation of target environments represents an important research effort, but
its real application potential is limited. The main reservations CODE developers express are
that it maybe difficult to model architectures significantly different from their initial set. In
particular, fine grain parallelism is supported by the users knowledge of the problem and the
compiler for the chosen target language. The decomposition of the algorithm as done by
transfomations or by other preprocessor approaches is done entirely when specifying the
schedulable units. In some ways, this is ideal for developing programmer intuition and
skills, since the approach provides rapid target specific performance information. The user
can decompose his problem according to different architectural considerations, and execute
the models on the actual hardware using the supported compilers. What cannot be easily
done is to record the process of generating the different variants. What would be needed is
support for experimentation in expressing the algorithm using different mappings, to
complement CODEs capability of providing feedback on the effects of architectural
decomposition for a particular algorithmic formulation.

The developer's of CODE are about to announce a new version that addresses some of
these issues. They have unified the concepts related to specifying synchronization
expressions, into classes of operations that permit more effective translation. This has the
effect of decoupling transformations that potentially interfere for very general data
dependencies. In effect, they are supporting the derivation of specific categories of
synchronization operations from the more general relations of SUCs (now called just UCs)
allowed in the first version of CODE. This should tend to support :xactly the kind of
successive refinement (under deterministic transformations) that is needed to address the
variant issue raised above. Presumably, this involves mprovements in ROPE to record
related configuration items. This seems a likely direction that hopefully will be pursued in
the future.

Express

Express is a commercial parallel programming environment designed to address basic
development issues. It includes tools for programming, debugging and performance
monitoring of distributed hardware platforms. We considered EXPRESS as a substitute for
the Meiko CS Tools that come with the Transputer, but rejected it since it forces the
transputers into a hyper cube configuration. However, EXPRESS is available on several
platforms in addition to the transputer, including a network of workstations which may
make useful in some applications for the PEEP.
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Faust

Faust is a modern environment for supercomputers developed at the Center for
Supercomputing Research and Development, at the University of Illinois, in Champagne-
Urbana. Supporting Butterfly, Cedar, and Ardent targets, Faust is basically a supercomputer
resident environment, but is "conventional UNIX compatible", and can be run on Sun
workstations. It has functions for user interface, graph manipulation, and text processing. It
provides a high-level graphical view of function and task relationships. Its multi-language
editor supports FORTRAN and C with various extensions, as well as a Pascal-based
functional language. It includes a graph browser and a dynamic parallel program monitoring
tool. All its graphics use X for portability.

Faust seems to be the most immediately usable of the current environments for
parallel programming in conventional languages. In particular, its program database and
intelligent editor capabilities are well-integrated with the architecture-specific optimization
capabilities needed to produce executable parallel code. Its editor, called Sigma, performs
vectozing optmiations based on knowledge of the target architecture, applying program
transformations under user control. Optimizations have the results of dynamic analysis
available, using information fed back from monitoring during execution.

Faust inserts program monitoring in a systematic way as part of its preparation of a
parallel program for a given architecture. The information collected becomes part of the
application program database as either performance statistics or data dependence
information. The dynamic flow and data usage information can be used by optimizing tools
for global flow analysis and for determining when particular program transformations can
be applied during architecture mapping. Also, Faust provides a dynamic call graph animated
view of a program execution that displays the dynamic execution of a parallel program in
terms of its original subroutine call graph. Additions support integrated interactive display.
Farust's Integrated Multiprocessor Performance Analysis and Characterization tool set,
IMPACT, integrates performance data collection with display and analysis tools. IMPACT's
event-display tool traces multitasking events and displays them in real time.

The Faust project appears to have minimal interest in exploration of the programming
language problem. Emphasis is on extensions of FORTRAN and C (including concurrent
C and C++), for its target architectures. Among the parallel environments, Faust definitely
provides the most advanced support for vectorizing optimizaon. However, Faust has little
capability to deal with algorithms that are parallel at a very high level, such as data flow and
parallel graph algorithms. It concentrates on solidly supporting programmability in
conventional languages for a few related architectures, but provides no basis for
experimentation with different parallel programming languages or methodologies.

Issos

ISSOS is a programming environment developed at Ohio State University that
supports prototyping of parallel applications. It also supports experimentation that is
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directed towazds improving the performance of parallel algorithms executing on the a
network of UNIX machines.

The system's Program Construction System (PCS) uses an object oriented dialect of
C called COOL to prototype the application. The PCS is equipped with a syntax directed
editor and a COOL to C source code generator for eventual execution in a UNIX
environment that supports mechanisms for process creation, scheduling and inter-process
conication.

ISSOS tools help the programmer create new "program adaptations" that differ from
the original with respect to performance. Static adaptations are implemented by including
"Program Adaptation" statements in the program. These statements control load balancing
and can effect the execution of a process. In addition to adaptation statements, the
Adaptation Controller (AC) is aware of the physical characteristics of the target and can
modify the allocation of resources to the running program accordingly.

The AC also does dynamic tuning by interpreting data about program behavior
collected by Program Monitors which exist on nodes.

ISSOS is still very much a research effort, with even its language (COOL) in some
process of evolution. That, combined with its emphasis on large grained parallelism, limits
its applicability to the PEEP.

OmegalPegaSys

Omega was developed at Stanford University in the early 80's as a non-linguistic
programming environmenL It supported input of programs in mixed form, including
traditional algebraic form for expressions, graphs for control structure, and icon
representations for program structures. It combined this with a relational program database
that supports development through successive refinement by providing relations as
sequential interpretations.

Omega pioneered, and PegaSys continues the development of, the use of "software
through pictures" and very high level non-traditional programming techniques. In PegaSys,
the user describes how a program is built using a hierarchically structured collection of
pictures called formal dependency diagrams (FDDs). PegaSys is implemented in Interlisp-
D and runs on Xerox 1100-series personal computers, and the only language currently
supported is Ada.

There are three major components included in PegaSys:
Interface Tools
FHierarchy Manager
Program Verifier

The interface tools include a display management package and also a package that
maps graphical operation into logical operations. Also included with these tools are
graphical and textual structure-oriented editors, a pretty printer, and a database which



maintains FDDs and programs. The hierarchy manager ensures that each level of an FDDimplements the levels above it correctly and also aids in the construction of the levels of an
FDD. The program verifier determines whether an FDD is logically consistent with the Ada
prgam it describes.

PARET

Developed at AT&T Bell Laboratories, PARET is a system description and simulation
language oriented to architecture design and investigation. It supports graphical layout of
processors and division of parallel functions among processing elements (PEs), switching
elements (SEs), and communication elements (CEs) (in networks of CPU's). It primarily
simulates machines with a MIMD architectmu without shared memory. It supports
graphical layout of these elements with arcs representing data and control flow, and allows
association of capacities, buffers and timing delays with their interconnections. During
simulation, information can be passed to analyzers of time dependent sequences to generate
control traces and calibrated dynamic utilization displays called meters. Computation within
a processor can be simulated by a delay, or the computation can actually be performed if
written in C or C++.

The PARET user interface provides a fixed screen configuration that includes
windows for the display of:

• the active parts of the system or subsystem graph
• the set up of simulation parameters and flow graph database
• the graphs or meters of significant activities

Nodes and meters provide significant measures of system performance and, typically,
are used to determine if a given design is capable of satisfying a set of design goals. All
nodes and meters assigned to one processor are shown in the same color.

This is a good example of a system simulation approach that would be needed for
realistically modeling a wide variety of parallel computers. However, it is dferent from the
above work on parallel progranmming because it concentrates on hardware description and
provides no support for advanced software development methods.

PIE

The Programming and Instrumentation Environment (PIE) is a programming
environment, developed at Carnegie Mellon University, that pioneered the application of
environment concepts to parallel program analysis and development. PIE is composed of a
Modular Programming (MP) metalanguage, a program constructor, and an implementation
assistant. The MP metalanguage provides support for the efficient manipulation of parallel
modules and fast parallel access to shared data constructs. The program constructor (PCT)
provides the capability to generate efficient parallel programs. The PCT is itself composed
of three elements, a MP-oriented editor (MPOE), a status and performance monitor, and a
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relational representation system. The implementation assistant provides semantic support in
the parallel program development cycle.

The language and concepts of PIE are very good, but are somewhat specialized in their
support of a particular model of parallelism (shared memory multi-processing targets with
medium, to large grain parallelism). PIE is a good example of an early parallel progranmning
system, however, the PEEP requires a more general ability to model other parallel
methodologies.

POKER

POKER is a parallel prgrammig environment developed at the University of
Washington that uses a visual representation to describe parallel programs. Poker assumes
an underlying message passing non-shared memory architecture.

Programs are constructed by creating and manipulating visual or textual
representations of information about the program called "views". The heart of a program is
its communication ructure which is represented by a communicating graph. Nodes
represent processes. Edges describe commtmication to ports on other nodes. Ports are also
represented graphically as a view. The process views are defined textually in "Poker C" and
labeled to correspond to vertices in the graph. "Poker C" is similar to regular C except it has
an additional construct to describe inter-process commuication. There are also I/O views
that associate dangling edges with input or output streams.

A Poker program's "views" plus the source code for the processes are stored in a
program database which is compiled and can be run on a simulator. The simulator is
equipped with a "Trace view" that includes a timing model Trace view lets the programmer
stop the program, single step through it and monitor traced variables. Poker programs also
run on several parallel computers including the Pringle parallel computer and the CalTech
Cosmic Cube.

Poker has been used by over 50 institutions for 5 years and a large number of parallel
programs have been written with it. This experience confirms the notion that visual support
for parallel programmers improves productivity. This approach, as implemented, is limited
because large programs are difficult to input graphically, and are confusing to view. A user
is forced to construct large programs from smaller building blocks. Consequently Poker
supports a paradigm for algorithm construction based on decomposition. Poker users
typically decompose physical problems into a group of independent parallel programs that
are each defined by a co*mmnication graph and its associated views. These programs are
called "phases", and a group of them are executed to solve a complex problem. This
approach encourages modularity, reusability, and graphical representation of program
components. However, the synchroization between phase executions is inefficient and
there is no rnech•-.Lm to build -.ingi! executable applications. The programmer is forced to
run phases one after another.

A new parallel environment called Orca is being planned by the Poker researchers to
correc these deficiencies.



Promemens

Prometheus is a UNIX-based environment originally developed at Virginia
Polytechnic Institute and State University, in Blacksburg. It has a Backus FP "combining
forms" functional language, provides three different ways of constructing programs (top-
down by graphical editor, bottom-up by language-sensitive editor, and iteratively by graph
transformation), and executes by an extended Bourne-shell with a graphical debugger. It
includes a Tool Description Language for functional extension.

For dynamic analysis, Prometheus provides four views of dynamic behavior road
maps, activity execution graphs, invocation trees, and frame usage. These can use explicit
program points, or can make use of probes inserted into the interpreted code in a controlled
way to monitor block entry and exit. These probes are maintained in a sensor-enable table
that is checked each time a sensor is encountered. There is a standard format for
transferring this information to the program database for post-mortem analysis. Probe
insertion and enabling are both under user control, to keep intrusion to a minimum.

This is a powerful environment which could be a framework for program analysis,
including investigation of parallelism. However, it includes no direct support for "very high
level languages" and would require extensive use of its extension mechanrm to model a
variety of parallelism methodologies.

PSG

Developed at the Technical University of Darmstad, the Program System Generator
(PSG) is probably the most thorough integration of programming language definition and
verification techniques with environment technology. PSG generates language sensitive
editors, an interpreter, and a fragment library system using formal language specifications
for any user-defined language.

The main component of PSG is a full-screen editor which permits both text and
structure editing. Prevention of both syntactic and semantic erors are guaranteed when
using the editor in structure mode. In text mode, the editor guarantees the immediate
recognition of these errors. PSG has been used to generate environments for ALGOL-60,
Pascal, MODULA-2, and the formal language definition language itself. The main interest
in PSG for the PEEP is its use of common type definitions in the tools generation process
to guarantee interoperability of tools.

RPDE

This is a software process project at IBM Yorktown Heights that supports an object
oriented tool framework for integration of program analysis and processing techniques.
RPDE has been used successfully in:

-69-



Sextending tool functionality,
* extending data domain of tools,
* supporting new languages,
• integrating separate environments,
* supporting new/different operating systems.

RODE emphasizes common services along tools, including mappings from internal
tool data representation to common interoperable formats that are a kind of temporary
common Mfie system. The initial efforts have shown that the common service framework
covers almost all of the needed services for new processors.

In their article "Support for Change in RPDE", M Ossher and W. Harrison wrote:

The research issues being pursued in connection with Garden are similar
to those of interest to us in building and using RDPE. Both systems
employ a substantial functioniol fiamework of services, with an object-
oriented definition of conceptual language structure on top. The
developers of Garden have employed it to explore graphical
progrmming, the creation of user concept structures, and visual output.
We have employed RPDE to explore ways of exploiting the structure of
professionally developed software to solve in-the-large programming
problems. We have also devised and demonstrated the usefulness of
some extensions to the object-oriented paradigm.

These are similar to the goals of the PEEP and indicate possible directions to pursue.

TOPSYS

TOPSYS is an integrated parallel programming environment that addresses
monitoring on distributed platforms using a number of cooperating techniques and tools. It
is currently only available for the iPSCP2; however, if the Sun workstation version currently
being developed becomes available, it should be evaluated as a possible stand alone special
purpose development vehicle for the PEEP.

FORTRAN Parallelism Support

FORCE

FORCE is an extension of FORTRAN for parallel programming of scientific
applications on shared-memory multicomputers. It is currently not a supported tool,
however, it is available "as is" to interested people. It is based on the UNIX tools sed and
m4, and there are versions for Encore, Sequent, Alliant and Cray machines. It involves
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parallel control structures which are expanded by aget dependent macros to architecture
specific microtasking calls.

PAT

Developed at Georgia Tech, PAT (Parallelizing Assistant Tool) is a menu driven editor
for analyzing and incrementally transforming FORTRAN programs to achieve greater
usage of available parallel optimizations. It analyzes the program for specific features,
including common data usage and looping behavior and allows the user to change the
program under specific conditions. Some of the transformations can even be done
automatically, and then subjected to user scrutiny for possible improvement or partial
reversal This effort shows the kind of user engineering that can be expected to play an
increasing role in parallel programming support efforts. It can draw on compiler-related
efforts that are basically optimization projects, such as the Rn project at Rice and several
parallel compiling projects of hardware vendors, and on the program transformation work of
such projects as Meta-Crystal at Yale and E-L at Harvard. PATs use of an intelligent editor
to control a semi-automatic program refinement process draws on work such as Interlisp
and the relationship of EMACS and LISP that has a long history at MIT.

The model used by PAT has some important central properties:
1. subroutines are analyzed one at a time, with information from nested calls used as

2. loops with no dependencies are identified for optimization first;
3. loops with dependencies are analyzed incrementaliy under intelligent editor control

using semi-automatic refinement;
4. line numbers from the original source are preserved throughout the improvement

proes to allow maximal use of programmer knowledge.

PAT supports three levels of interaction:
Manual Mode - where the user has complete control over transformations,
Power Steering Mode - where the tool makes suggestions using available information

and follows user directions,
Auto Pilot Mode - where the tool will perform sequences of transformations

independently.

"The last mode is still a research area, but activity appears to be progressing. The
program regions analyzed by the PAT under user control are:

"• subprograms,
".loops,
* loops with governing if conditions,
• parallel regions (TBD).

An important aspect of subprogram aaalysis is control over the amount of called
program information. Basically complete analysis is needed to handle all possible
dependencies. However, this is very expensive and may normally not provide much
information. The PAT solution will be to allow the user to decide how much of the call
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graph to make use of. Full subprogram inlining is possible in the limit. The user may
control how much of the call graph is included for analysis and make use of the multiple
window browsing to coordinate which regions to be used. In this static analysis browsing
mode, none of the program tansformation actions may be invoked.

Program transformations are under control of a "sub-menu". Actions include adding
to and deleting from source and moving sections of code. Dependencies can be affected by
adding protection, adding alignment for loop indices, and replicating variables and
assignments. Some of this can be automated, since if a dependence graph is a tree, all the
dependencies may be removed by subscript alignment. This should be the kind of
optimization that will increasingly be done automatically as PAT is improved. More globally
optimal decisions such as process partitioning should continue to be done under
programmer control.

More ambitious optimization is needed for real architectural tailoring. A more flexible
approach would use PAT techniques to examine existing FORTRAN programs for
opportunities for annotating parallel computations. A second phase similar to the FORCE
tool for programming portable FORTRAN with parallelizable loops would then be needed.

Pisces

Developed at the University of Virginia, Parallel Implementation of Scientific
Computer Environments (PISCES) is a FORTRAN-based environment with concrete
language extensions for tasking and parallel blocks. It runs on a single processor VAX
using UNIX processes for parallel execution, or a network of Apollo workstations. It
depends on compiler-based analysis for higher-level program views and requires interpreter
additions for dealing with different architectures. The main interest in Pisces is in the form
of its task declarations, which are "clusters" having intrinsic properties (including
"controllers", "subtasks", and message handlers). Its parallel blocks are concurrent C-style
constucts. This project provides little basis for experimenting with either parallel languages
or hardware. Its FORTRAN extension would provide a possible "intermediate language" to
which very high level languages could be translated. Then, programs in this language would
have to be translated further to lower level FORTRAN as supported by standard compil-rs.
However, the sequential FORTRAN produced by the PISCES pleprocessor may not be
easily parallelized by anoher machine's parallelizing compiler.

Rn

This is Rice University's FORTRAN environment for parallel architectures. It has the
most advanced compiler-based analysis of the environments surveyed. It utilizes most of the
known static analysis and optimization techniques and performs vectorizing optimizations
for most available parallel architectures in the context of a complete optimizer and historical
program database. Rn is still a standard for supercomputer FORTRAN language
environments. The de velopers have deliberately avoided ever becoming multi-language or
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including any higher level formalisms in the source. All program development is done using
a program database and associated analysis tools. The latest extensions support using
execution information to improve optimization. By design, this effort provides no support
for high level parallelism, and so, is primarily useful in the PEEP effort for its ideas.

Schedule

Developed at Argonne National Laboratories, to provide portability of scientific
parallel applications, Schedule is a FORTRAN library of parallel support routines which
allow application programs to perform synchronization and scheduling. It runs on VAX,
Cray and various multicomputer hardware. It provides a way of dealing with limited
operating system and architecture variations as a procedural extension to FORTRAN.

Special Purpose Tools

BALSA-1I

BALSA-Il is a program annotation and monitoring system under development at DEC
System Research. It is an outgrowth of the BALSA program originally developed at Brown
University. It involves programmer specification of significant program points, and use of
programmed tracing routines to cause system monitoring and data collection at run time.
The data obtained is used to monitor execution in whatever is determined to be the most
critical or significant way. Typically, this involves data usage or execution frequency
information that can be used to significantly improve algorithm performance.

BALSA-il provides a graphical interface which allows the user to vary the point of
view under control of a mouse. It communicates with the program viewer to display the
section of the program graph affected. The ability to view results is important for providing
real data to guide performance imrovements. It is not specifically related to parallelism, but
could be used to explore algorithms executing in parallel by assigning monitoring elements
to individual processing units. The importance of its features cannot be overemphasized in
trying to characterize the behavior of a parallel system.

Trace data is often very difficult to interpret meaningi'ully, and often there is a need to
relate behavior at different program levels. BALSA-11 provides this kind of control, and
includes a user interface that enables dynamic selection of monitored events and traces. The
user can have the effect of "zooming" and "unzooming" to get a valid feel for how much
activity is occurring in particular subsystems and subprocesses.

BALSA-fl is a methodology for annotating and interpreting programs of any kind and
does not depend on the language or the kind of problem. Initially, it makes use of an
extended Pascal, but it can support any language. It makes good "meaningful use" of color
in its graphics, shows the possibilities of graphics in program monitoring, and suggests the
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importance of user-supplied high-level structuring information for programs in any
implementation language.

Since the Garden system has taken many of the same concepts and integrated them
into it's multi-lingual graphics front end, these concepts are available in either system.

Da/ek

Dalek is a debugger developed at the University of California at Davis to run on top of
traditional debuggers such as sdb. It is primarily an event oriented debugging L, guage
useful in any dynamic program analysis, including traditional testing. It allows logical
operations, queries, conditional execution-time actions on events, and monitoring and
profiling under user control. It can be used like compiler and linker-inserted probes for run-
time monitoring and can perform dataflow analysis of event relationships like intelligent
debuggers. It relies on user-supplied event definitions and can be used with any language.
Dalek uses the techniques of traditional debuggers, but is more powerful in that its event
language is a kind of monitoring meta-language. Its role as a sequential debugging/testing
tool could be adapted to support parallel program tracing and performance analysis.

E.L

E-L (for Lnvironment and Language) is a transformational framework developed at
Harvard and supported by Software Options, Inc. for refining programs using a variety of
software methodologies and for compiling to many targets. E-L supports:

• a flexible linguistic medium to allow the user to specify the domain of discourse
* an open-ended tool set to allow existing and new tools to interact easily
* a base of operations and principles of extension for manipulating programs

While based on principles of language extension, the E-L approach is different from
standard language compiling in that programs are manipulated by tools whose base
transformations are modified to produce interpretable E-L at successive levels of semantic
refinement. The final level is a program using primitives close enough to the desired
hardware operations that standard code generation techniques can be used to compile to
executable programs.

E-L has been successfully used to model a UNITY compiling process that provides
UNITY syntax and semantics, as well as a facility for structuring UNITY programs to allow
checking of meaningful program composition.

FIELD

The Friendly Integrated Environment for Learning and Development (FIELD) is a
interactive, UNIX workstation based programming environment that runs on top of X-
windows. Developed at Brown University, it provides a variety of tools for program and
data visualization and offers a consistent and integrated graphical interface. FIELD's main
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feature is a central, selective broadcasting mechanism that lets new tools be integrated into
the system with little effort in the future.

The tools currently integrated into the FIELD environment include a syntax directed
editor, debugger, cross referencer, data strucre displayer, Make interface, profiler, and
general system viewer.

GARDEN

Developed at Brown University, GARDEN is a "visual programming environment"
that has been used to model a wide variety of parallel programming methodologies. It
supports:

"* rapid implementation of design languages to facilitate "conceptual programming"
"* object-oriented program graphs
"* textual interface with Lisp-like Functional Programming
"* primitives for object properties including concurrency
"* translation to C to achieve compiled-code performance of the simulation

GARDEN has been used to model data flow systems, finite state path languages, Petri
nets, a CSP-like ports language, Linda and a MultiLisp system Extensive engineering of
user interfaces has been done to support monitoring. There is a capability for supporting
many windows, monitoring specifically programmed events, and the interpreter aows any
desired arrangement of processes and processors to be monitored at varied levels of
description.

Like many of the parallel environments, GARDEN supports instrmentation either
automatically, by inserting non-intrusive probes at significant points, or by programming.
This data can be used with a program viewer for value tracing, or to monitor significant
activities, or can be analyzed to generate various kinds of control traces or dynamic
utilization displays. For object monitors, GARDEN communicates with the program viewer
to display the section of the program graph affected.

As a programming environment GARDEN is incomplete in that it supports neither the
reading of source code for the modeled languages into the GARDEN environment nor the
output of objects from the system into their textual source format. This problem can be
solved by defining methods for both reading and writing source along with the other objects
for the modeled language.

Hypertasking

Hypertasking is a software parallelization tool fnr the Intel hyper cube. It is currently
available as an unsupported tool from Intel for the iPSC/2. Currently it does not run on any
other parallel hardware.
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IPS-2

Developed at University of Wisconsin-Madison, IPS-2 is a performance measurement
tool for parallel and distributed programs. Measurements can be displayed at different levels
of abstraction including the program's behavior as a whole, that of processes, procedures
within processes, or primitive machine level activity.

Programmers do not need to modify their programs to use IPS-2. The raw data is
gotten through the use of instrumentation probes which are contained in the run-time
system and operating system kernel. The user chooses to use them via compiler and linker
options. Their output is kept in a data pool and analyzed when requests are made through
the user interface.

IPS-2's graphical user interface lets the user assign executable images to processes,
processes to machines, select statistics for display and begin the execution of the program
interactively. IPS-2 then displays the requested performance statistics. Additionally the tool
locates bottlenecks by performing Critical Path Analysis. IPS-2 can also perform Phase
Behavior Analysis which automatically identifies phases in the execution history of the
program so that they can be studied more carefully.

IPS-2 has been used to provide data for analytical performance models of parallel
systems, and to measure the characteristics of parallel database join operations, parallel
searches, and network flow programs. User feedback suggests the tool is easy to use and
useful.

MPD

Multi-Threaded Debugging is work done at Columbia University using Mach C
Threads. The methodology uses global control flow analysis to identify partial orders of
events, and to construct predecessor automata. These automata are used to instrument
programs and provide meaningful ca a of debugging and trace information. The
debugging language allows the user to assist in analysis and to use identified events in path
expressions to control monitoring activity and filter trace data.

This is a general, language-independent, debugging technique, including sufficient
source analysis to support tracing of parallel execution. It can be used with other language
preprocessor and transformation techniques to provide support for visualization used for
either algorithm munders ing or performance analysis.

Olympus

This is an interactive modeling system, however, its graphical interface is Sunview not
X. It is unusual for people to still be using Sunview, so it might be worth investigating
whether the developers have moved to X since we last talked to them.
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PADWB

Parallel Algorithm Development Workbench is a tool that facilitates the evaluation of
algorithms by simulation. The user models the communication overhead, inter-connect
strategy, CPU, etc. to obtain a graphical description of the system's behavior. The output
shows the relationship between communication and CPU usage including idle times and
periods of overlapped processing and communication for all processors involved.

The modeling is decomposed into three layers: Network, Cluster, and Processor layer.
There is a software interpreter that accepts the code under test as input and a Graphics post-
processor that gather's combined input from the other layers and generates output.

Basically the algorithm is interpreted by the "software interpreter" which generates an
instruction stream to the "processor flow model". This layer does instruction counts and
accounts for the relative speed of different instructions. This stream is, in turn, fed into the
"cluster model" which models a group of a processor's contention for shared resources. It is
here that time required for bus access, memory access and I/O are accommodated.

The inter-connection between processors, and the cost of communication, is modeled
by a "network model". This section is the heart of the simulation as it relates to parallel
processing. It can represent various inter-connection methods and demonstrate their
suitability to a proposed algouithm.

All the models are process oriented next event simulations written in Simula with
DEMOS extensions and in C. Some component behaviors are modeled by stochastic
assumptions. Performance is a concern with this type of simulation especially when very
detailed models are used. Another consideration when assessing the value of such
experiments is the assumptions that are made with respect to exogenous events. These
assumptions will to a large degree, determine the accuracy of the results.

Work on this tool at Gould is on going and as of 1988, the network layer was
incomplete, although parallel experiments were being conducted by using the processor
layer. The experiments were small, involving known problems (matrix multiply) with only a
few processors (2).

PAWS

Developed at Syracuse University, PAWS (Parallel Assessment Window System) is
an integrated X-Windows based toolset for evaluating existing or hypothetical machine
architectures running a common application. It translates source programs from a high-level
source language into the form of a dataflow graph. It maps this intermediate form into an
executable ch e on using target machine description models that currently reflect a
SIMD (Thinking Machine's CM-2), a shared memory MIMD (Encore Multimax), and a
message passing MIMI) (hyper cube) architecture. It supports user-controlled monitoring
that relates dynamic information back to the graph of the source program.
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The source languages supported are SISAL, a single assignment language based on
stream operations, and Ada. Programs are translated to a graphical dataflow language IF1,
an intermediate language for SISAL. The partitioning of processors and evaluation of
performance information all make use of user controlled heuristics and actions performed
during walking this graph. The machine descriptions include processors, memory
characteristics and interconnection topologies. These are created using an interactive tool
that allows a complete hierarchical description of the target hardware. This is also in the
form of a graph, with a structured arrangement of information about processor, memory and
network/connection characteristics. Query parameters allow reference to data from these
structures. The query types for performance data include times for arithmetic and logical
computation, communication costs and network overhead.

An interactive display tool provides the user interface for accessing all the PAWS
tools. This is a hierarchical menu-driven system, supporting multiple windows for
programming, interpreting and evaluating parallel algorithms. Called the IGDT, this displays
graphs hierarchically, allowing the user to select a node and expand or contract the field of
view to display as many nodes as desired. The same interface is used to describe all the
application code, architecture description and assessment options. Similar menus support
specification of compiler options when the Ada compiler is invoked and selection of
performance metrics during evaluation.

The normal mode of using PAWS for assessing an algorithm is to run a compiled
program on a theoretical architecture assuming an ideal number or arrangement of
processors for the program first. Then the program is run on a variety of architectures more
closely approximating intended targets. The effective speedup or other cost metric can be
determined from the monitoring data collected for each run. The algorithm can be debugged
using the same kind of facilities on the ideal machine, or on adaptations to reveal different
possibilities of data and processor usage.

The architecture description framework is just a graph structure, built with the same
tools as the basic PAWS facilities. This structure includes relationship to a predefined
architecture chrterization structure. This describes:

• the number and flexibility of different functional units,
* the number of processors,
• memory bandwidths and memory hierarchies,
• the types of interprocessor communication mechanisms.

There are five areas hierarchically partitioned into a fine enough detail to provide
desired granularity of measuremet. These areas are computation, data movement,
communication, control and I/O.

Both parallelism and execution profiles are generated/computed by walking the
program dataflow graph. The walk traverses the graph recording and evaluating each node's
performance and statistical data. To handle compound nodes, the walk recurses, thus
allowing statistics for individual procedures and blocks to be recorded and maintained
individually and evaluated hierarchically. Recursive calls in the application are implemented
as bounded loops, with a bound based on estimation or actual data from previous runs.
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PAWS provides a way of modeling almost any architecture. By using IFI and
performing all analysis on an arbitrary graph, any level of computation can be modeled and
then mapped to an architecture using graph pattern matching. Data for comparing
perfo c on categories of architecture could be obtained by adjusting the architecture
graph, thus allowing the equivalent of general simulation. Information on processor usage
and communication overhead can be obtained in a structured way with a flexible machine
description. This facility is an important technique for evaluating processor decomposition
and interconnection strategies.

The system has an Architecture Characterization Tool that lets a user specify the
architecture. A machine-independent version of the application (a data dependency graph) is
then generated from a standard high-level language with the Application Characterization
Tool, and is "executed' on the machine. The performance of the proposed architecture is
profiled with a Performance Assessment Tool and a graphic display is implemented via an
Interactive Graphical Display Tool. These tools generate parallelism profiles and speedup
information in an intuitive graphical format.

PAWS is unique in that it provides for an assessment of the synergy between an
application domain and its architectural platform. With these tools a user can determine the
efficacy of a particular machine organization for his particular problem set.

PProto

PProto (for Parallel Prototyping system) is a CASE tool with graphical input of
parallel systems specified as functional elements mapped to parallel architecture models for
simulation and evaluation. Functional elements are refined into interpretable components
and used to debug and measure models of algorithms on various architetua models.
PProto provides:

" prototyping capabilities addressing functional, structural, timing and behavioral
abstraction issues, allowing multiple versions of a system prototype to be modeled
and evaluated

"* concurrent execution model involving systems of multiple communicating
processes simulated on very general multi-processors

"* support for top-down incremental development via component reuse
"* support for studying softwaehaMdware mapping tradeoffs through identifying

architecural resource impacts
"* sophisticated simulation capabilities, including utilities for interpretation,

scheduling, resource modeling, instrumentation, animation and debugging

A PProto specification is a hierarchical data flow graph consisting of processor
elements, data storage units, communication connections and ports. The behavior of each
leaf of a model is described with a simple structured programming language (SDDL
-Structured Data Definition Language) which is supported by the PProto interpreter.
Tools include:

* graph editor, for producing data flow graphs,
* behavior editor, for editing SDDL node behaviors,
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* schema editor, for menu-based editing of data storage units,
m reuse facility, for saving components of models,

* architecture editor, for graphical editing of hardware topologies,
* mapping editor, for specifying softwaWrhardware component mappings,
• prototype simulator, for execution, animation and debugging.

PProto is a process description language and persistent database that supports
modeling and performance analysis for parallel hardware design. It uses behavioral
modeling, with process models and a concurrency notation that includes guards and actions
similar in spirit to Dijkstra's guarded commands. PProto allows direct mapping of these
high-level specifications to target hardware descriptions that can include processors,
memories and buses as basic configuration items. It can perform simulation analysis with
mechanisms similar to debugging commands, and supports user programmed monitoring at
the model level It reports statistics on communications, including size of buffers, which
enables detection of bottlenecks.

TANGO

Tango (Transition based ANimation GeneratiOn) is an object oriented algorithm
animation system developed at Brown that lets the programmer illustrate the "interesting
events" within a program without having to write any low level graphics code. This package
can be used with the FIELD programming environment described earlier.

VMMP

The Virtual Machine for Multiprocessors (VMMP) is a software package that
provides a set of services to write parallel applications for MIMD multiprocessors in a
machine independent fashion. This is done by abstacting common requirements of parallel
algorithms into a set of procedure calls whose implementation are hidden from the user.

The author identifies 2 paradigms for parallel algorithms: "tree computations" and
"crowd computations". Tree computations are a strategy which solves problems by breaking
them into subproblems and assigning the subproblems to child processes. "Crowd
computations" are groups of processes executing the same code on distributed data and
synchronizing with messages. In other words a message passing based data-parallel
approach. VMMP also offers a set of functions that creates shared objects available to all
processes. Shared objects are provided so that the programmer can distribute data, collect
results etc.

An example of a mee computation entry points is Vcall. Vcall creates a child process.
Vwait allows the parent process to block until its children tminates.

An example of a crowd services is Vcrowd. Vcrowd creates some number (which is
passed in as an argument) of processes all executing the same code. Vsend allows the
programmer to send a message to any or all processes within a crowd. There are functions



to specify a topology to a crowd to help optimize communication. VMM4P supports a ring,

torus, mesh, n-cube and tree.

VMMP supports associate functions that operate on distributed data via the Vcombine
entry point. Associate operations are used with shared data objects which can be created
with Vdef.

The VMM hides low level communication and synchronization requirements of a
problem from the programmer. Instead he is offered a set of high level operations that are
typically used in parallel algorithms. These parallel constructs, however, have known
communication and synchronization requirements for a particular architectur. This allows
run-time optimizations to be made transparent to the user. Never the less, only a good
marriage between hardware and parallel coding paradigm can insure an efficient program.
For instance, shared memox•y operations entail a high communication overead on a MIM
machine which uses discrete memory for each processor. A general disadvantage of this
kind of approach is that the relationship between a chosen construct and its efficiency is not
obvious.

The VMMP has been implemented on two shared memory multiprocessors (an ACE
and MNVX) and three uni-processors, and is being implemented on a distributed memory
multi-processor. It is used as the intermediate language for a portable parallel Pascal
Compiler.

The main advantage of this system is it portability. It is appropriate for medium and
large grain paraUelism.

Parallel Languages

C*

C* is a data-parallel language that is based on C and C++. C* was developed at
Thinking Machines Corporation for the Connection Machine. The aggregate data structure
is the "domain". A new statement type, the "select" statement, defines parallel execution
within domains.

The sequential code that each processor executes in parallel is standard C code. The
index within a domain specifies the virtual processor that a domain element resides on.
Incrementing or decrementing a domain index identifies the adjacent processor. This gives
domains a grid-like shape.

C* is completely synchronous. Virtual processors execute their instructions as if the
host processor were broadcasting the instruction at all the processors in typical SIMD
fashion. MIMD operations can be executed by dereferencing pointers to functions because
dereferencing operations occur in paralleL
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It is interesting that C* programs have been used successfully to develop data parallel
programs on a shared memory MIMD machines (Sequent), and on a hyper cube (NCUBE
64). These efforts support the contention that data-parallel programming has applicability to
a broad class of architectures.

Crystal

Crystal is a finctional language developed at Yale University which supports "macro"
data parallel programming. Crystal assumes a macro-parallel machine model with the
following characteristics:

1. The machine consists of processors, each with local memory, named by a
coordinate system (an index set) that will be mapped to the processor space of the
machine by the compiler. Each processor can have local variables and read only
constants.

2 Processors can execute two kinds of operations: they perform a computation (by
executig processing functions) or they commuicate with other processors (via
conmmnications functions). Processing functions operate on local variables. They
take as arguments, other local variables, constants and remote arguments passed in
from other processors. These remote arguments are gotten from other processors
by executing communication functions. Remote argument values are sometimes the
product of merging values (a many to one mapping) from many processors.

3 The crystal computational model includes the notion of a time step. During a time
step a processor can execute a processing function without coummnication with
any other processor. In other words a time step is a period of parallel computation
that does not require synchronization.

4 A processor, via communication, can allocate and deallocate groups of processors
to execute subroutines.

Crystal borrows constructs like sets, tuples and the notion of aggregate operators from
older languages like SETL and APL It is a functional language that uses conventional
mathematical notation to describes a problem as a system of possibly recursive equations
over an index set. The indices correspond to virtual processors.

Crystal's approach to compiler optimization takes advantage of the language's
equational structure to automate program transformation. The notion is to generate
equivalent programs from the original that have more efficient patterns of inter-process
communication and data distribution.

Optimization efforts are helped by the language's functional nature which simplifies
data dependency analysis. Most importantly the language has two constructs to help the
programmer indicate to the compiler the data locality and recommended processor
organization for a problem's solution. These are the "index domain" and the "data field".

An index domain is a data structure that describes the communication costs within the
index set It gives the index domain a "shape", and each index a position in a logical space.
The data field is used to describe distributed data structures. The compiler can optimize the
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assignment of data fields to index domains. When this changes the index domain the
compiler uses a "domain morphism" to map the old index domain to the new, more efficient
one. Once this is done, the equational nature of the language allows the compiler to
transform the program mechanically into an equivalent program that matches the more
optimal index domain.

Programmer insight into the nature of the algorithm is needed to choose the most
efficient index domain, and index morphisms. This means that except for a narrow set of
problems, a Crystal programmer must understand the parallel nature of the solution, and be
explicit with respect to data locality and inter-processor communication as embodied by the
index domain and data field constructs.

DINO

DINO (for Distributed Numerically Oriented Language) is an extended parallel
prgamming language similar to C*. Users declare a virtual parallel machine that is best
suited to the algorithm, as well as a global data structure and communication patterns, using
procedures running concurrently as parallel processors. The language is C augmented with
high-level parallel constructs that allow the programmer to specify the data decomposition
scheme and communication pattern that is best for the particular algorithm. The DINO
compiler transforms the program expressed in terms of (virtual) data parallel processes into
an efficient program whose number of processes is the same as the number of available
physical processors. This reduces the overhead of many virtual processes and is very useful
on MIMD machines that have a small number of physical processors and relatively slow
inter-process communication. DINO is intended to be used primarily to write data parallel
programs on MIMD distributed-memory machines. It enables massively parallel SIMD-
like numerical computation to be programmed in a pseudo-SIMD fashion. Its effectiveness
depends on the process contraction optimization performed by its compiler.

Id

This is a high level language which supports fine grain parallelism and deterministic
behavior. Id is a data flow language and its approach to paralleiism is quite different from
other languages in allowing implicit parallelism. Id assumes that the programmer should not
be forced to identify and express the parallelism in a problem. Rather, the language's
operational semantics should allow the compiler to extract implicit parallelism.

Id also supports the notion that algorithms written in it should be determinate.
Typically, parallel execution of multiple processes are asynchronous because of variations
in scheduling and processor speeds. Determinate results require the program to manage its
own synchronization. Functional languages automatically guarantees deterministic behavior.
Id is a functional language augmented with a determinate, parallel, data structure called an
"I-structure". I-structures resemble arays and possess a property called "non-strictness'.
Non-strictness increases the opportunity for parallelism because elements in a data structure
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can be read before the all the elements have been defined. This fits the operand driven
characteristic of data flow architcures because operands that are data structure elements
can be used as soon as they are ready.

Id programs are compiled into dataflow graphs, which are the machine language for
the MIT Tagged-Token Dataflow Architecture. Id is very well suited for programming this
kind of non-Von Neumann target machine. Its non-strict semantics (which are at the heart
of its ability to capture fine grain parallelism implicitly) make it difficult to partition code
into a number of sequential threads that can be nm on conventional sequential and parallel
architectures. The tagged-token dataflow architecture uses instruction-level synchronization
to do all scheduling of computation. This dynamic scheduling insures optimal use of
processor elements. Communication is subsumed in parameter transmission.
Synchronization is a requirement of execution of any function or operation.

Id is based on the premise that parallel programming cannot be made comparable to
sequential programming by extending existing languages. One problem is that the
extensions are often architecture-specific and reflect fundamental properties of memory
hierarchies, interconnection topologies, and non-uniform address spaces. Another problem
is indeterminacy-the problem of data races on access to shared variables requires
complicated coding and debugging methodologies. The program cannot be guaranteed to
avoid time and configuration dependent behavior. Another problem is that in many
applications, it is not possible to maximize use of a highly parallel machine. The problem of
optimizing partitioning, scheduling and synchronization activity is difficult even when the
application can be described de .itically. The challenge of using faster and more
massively parallel machines itself leads to attempts to solve more complex problems better.
In this environment, no single problem solving technique is adequate.

This is the environment where functional languages with implicit paralleism match the
problem domain best. A user's coding style is not affected by considerations of parallel
processing resources. In Id, opportunities for parallelim arise from evaluating the
arguments of a recursive function in parallel, and from concurrently executing the producer
and consumer of a data structure. This concurrency never gives rise to nondeterminacy
because there is no "updateable" data storage and hence no possibility of data races. Id
allows exploitation of parallelism in expressions, iteration, recursion and allows a higher
degree and finer level of parallelism than is practically obtainable from other approaches. In
addition, Id contains basic array strcturing facilities that are new in purely functional
languages, and allow vector-based parallelism (the basis of most numerical parallelism) to
be exploited fully. Id addresses this by a combination of language features, compiling
technology and innovative tagged hardware that yields a powerful unified solution.

The unit of synchronization is the I-structure. These are indivisibly written once only,
and can be accessed for reading only after they have been written. They are the fundamental
synchronization mechanism for all computation. Additional persistent arrays called M-
structures provide support for non-deterministic parallel graph processing or
multiprocessing and for resource management To avoid idling, it is necessary for the
processor to interface with data flow using minimum ovedrha and to switch rapidly to other
threads when data is not available. Dataflow hardware features instruction level forks and
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joins to allow lage numbers of threads to execute on a single processor. Thread-scheduling
is data-driveni-an instruction is nver attempted until its data are known to be available.
Threads may be as short as a single instruction so that parallelism may be exploited at the
finest grain. All long-latency requests are "split-phase" transactions: each request carries
with it a thread descriptor which is returned to the processor along with its response.
Threads may thus be resumed regardless of the order of arrival of responses. I-structures
cease to exist when they are no longer referenced; M-structures have global properties
associated with their managers.

Programng in Id involves a mixture of t cal and logical styles, with most
known programming language features available is some form. Arithmetic operations and
expressions, as well as basic ALGOL-tradition control structures are available. LISP-style
recursive function definitions based on efficient list processing are the fundamental units of
computation. Id includes a full library of basic arithmetic and string manipulation functions.
Its functional style depends fundamentally on list structures and basic list operations. It
includes array and record structures with a full set of basic operations. A pattern matching
notation is used to do a variety of list, array and record selection operations.

Linda

Linda is a high level set of language extensions for parallel programming developed at
Yale University. As described by its developers in a Communicatons of the ACM article:

"In the research community, discussion of parallel programming models
focuses mainly on message-passing, concurrent object oriented
ptogrmming concurrent logic languages, and functional prograFmmng
systems. Linda bears little resemblance to any of these."

Linda involves the "explicit creation of parallel execution threads" by modeling
activities as a collection of active and passive "tuples". Active tuples are a bit like processes.
Passive tuples can be thought of as data available to anyone that wants it.

There are four operations defined over "tuple space": out creates a passive tuple (some
data). In selects an existing tuple that matches a criteria and removes it from "tuple space".
Should the sought for tuple not exist, the "in" statement blocks until the data becomes
available. Read acts like "in" except it reads the tuple, but does not remove it. Eval creates an
active tuple (data and some code that acts on it). When the code finishes executing, the
result is a new, passive, tuple left in tuple space.

Linda operations can be added to any language, and have been used with FORTRAN,
C and C++, Scheme, MODULA-2 and others. Linda promnotes an "uncoupled
pogramming style" that does not require any specific relationships (client-server, master-
slave). All the main models of parallel programming have been successfully programmed in
Linda-C, with noticeable improvements in understandability and program usability. The
Linda object manager is a "super operating system" that performs dynamic object
management under concurrency constraints. This is a very complex interpreter, that runs on
Sun and VAX workstations.
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Linda's authors feel that the language is not suited to SIMD architectures, but would
be: "an excellent language for massively parallel, fine grained, asynchronous machines".
Linda systems are commercially available for use on homogeneous networks of Sun
workstations, shared memory MIMD machine manufactured by Encore and Sequent, as
well as the distributed memory Intel iPSCI2 hyper cube.

Linda is especially suitable for modeling in a very general environment that does not
require programmer interaction with resource control. Modem distributed MIMD
environments are probably the area of its greatest potential.

*/isp

*Lisp is a parallel extension of the Common Lisp language, and has the same syntax

and style as Common Lisp. *Lisp a&5s one major data type to Common Lisp: the parallel
variable, or pvar. This is an abstract data object that represents the concept of a value stored
in the memory of each processor on the CM. *Lisp also adds a large number of functions
and macros that operate exclusively on pvars. Among these operators are parallel
equivalents for many of the operators available in Common Lisp, as well as special-purpose
operators that perform such CM-specific tasks as processor selection, interprocessor
communication, and scanning.

*Lisp is available in two versions: as an interpreter/compiler combination for the CM

hardware, and as a stand-alone simulator. The *Lisp interpreter and compiler are extensions
of the existing interpreter and compiler in Common Lisp, and *Lisp programs are written
and compiled no differently from Common Lisp programs. The *Lisp simulator runs
entirely on the front-end computer and simulates the operations of an attached CM. Code
developed using the *Lisp simulator can always be ported directly to the *Lisp
interpreter/compiler on the CM hardware with few modifications. However, code compiled
using the simulator must be recompiled to run on the hardware.

Molecule

Molecule is a language effort that involves defining new classes of program constructs
called "molecules". A molecule belongs to one of three levels of program abstraction. The
highest level uses data-flow semantics. These molecules are used to write applications in a
machine independent way. The second level is the "mode" layer. Molecules of this class
correspond to the architectural characteristic of the target machine and the kind of
synchronization and commnication facilities that are appropriate with that style of
hardware. For instance, molecules in the mode layer might be concurrency primitives
(send/receive) for use on a discrete memory MIMD message passing machine. Each class
of "mode" molecule represents a kind of intermediate language that is tailored to a particular
kind of parallel machine. A program transform tool called a "molecularizer" converts the
application layer molecules into a program expressed in the molecules for the a mode.

-86-



The lowest level of molecule is the machine layer, which is the language for which a
compiler on the target exists. A "source code to source code pre-compiler" is envisioned
that would take the output of the molecularizer, and truanslate it into the appropriate language
for the compiler automatically.

The emphasis of this project is to support a programming methodology that allows a
programmer to write in a data flow language. The researcher feels that such a data flow
language is the most user friendly, and totally divorced him from the architectural
requirements of the execution environment Then tools exist to perform transforms on that
language into an intermediate, and then a machine language suited to the class of machine of
interest.

The layered software development approach outlined above has been tried
successfully on a parallel matrix inversion problem using a data-flow and parallel dialect of
PAL (a Pascal like language) for the application and mode layer. The machine layer
language is iPSC hyper cube C with message passing extensions.

MuddLisp

MultiLisp is a version of a Lisp dialect called Scheme developed at MIT. Variants of
the language are available on a several parallel computers including the Encore Multimax,
the BBN's Butterfly, and the Alliant FX/8.

Parallel versions of Lisp typically support concurrency by adding an extension called
a "future" to the base language. The form, (future X), immediately returns a future for X
plus creates a task to evaluate X. The future of X is can be thought of as a place holder for
the evaluated value of X It can be used until the value becomes available. The future should
eventually resolve to a value when the child task spawned to evaluate X completes its work.

If a task 'T' tries to use a future of X, when it, in fact, needs the resolved value, 'T'
will suspend until the child process is through computing it. For some operations, like the
movement of a value from one location to another, as in an assignment statement, or the
passing of a parameter, the future can be used while the value is being resolved. This allows
a style of computation similar to dataflow.

The futur• can be used to perform data parallel operations. For instance, the MultiLisp
library function pmapcar takes the future of a function for every element in a list. This
results in the same function being evaluated in parallel for all elements in the list.

Critics of MultiLisp contend that the language is not transparent: it is difficult to know
when to use the future construct or how much it will cost.
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Ocamn

Occam is based on the Communicating Sequential Process (CSP) construct developed
by Hoare. An Occam program consists of active agents called "processes" that
communicate with each other via one way, point-to-point links between processes called
"channels". There are three kinds of processes: assignment, input and output. Assignment
processes change the value of variables. Input processes read from channels, while an
output process writes to them. Such communication is synchronized, i.e. the inputting
process will wait for another process to output to the channel.

These elemental processes are like statements in a conventional language. They can be
combined into a series of actions that occur sequentially with a "seq" sm nt. Or they can
be forced to occur in parallel with a "par" statement. Such combinations are themselves
processes, and, as such can be used in a par or seq statement. A par process blocks until all
the processes within it complete.

Occam is strongly typed and the scope of objects is limited to the process immediately
following the declaration. Processes can only communicate with channels. Occam does not
support shared variables.

Occam also supports an iterative construct, "while" and two control flow constructs:
"if' and "alt". The "if" is similar to "if' statements in conventional languages. The "alt"
statement selects one of a group of alternatives depending on the state of a channel.

Programming style in Occam connects large processes via a channel. The data is read
from a channel, manipulated by inserting processes after the receipt of the data, and output
to a different channeL It was developed to program the INMOS transputer and as such, is a
good match for MIMD architecture with discrete memory where the communication costs
to the adjacent processors is cheap.

Paralation Model

The Paralation model is specification for language extensions consisting of a new data
structure - (a "paralation") and new operations ("elementwise evaluation", "mapping" and
"match"). They comprise a parallel programming model that "can be combined with any
base language to produce a concrete parallel language." The resulting code is easy to
compile efficiently because the constructs contain explicit non-machine dependent
information about data locality, appropriate processor topology, and synchronization
requirements. It is machine independent because compilers can choose to use or ignore this
information depending on the machine organization.

There is a version of Paralation lisp based on common lisp that runs on the
Connection Machine. A version of Paralation C is under development.

A "paralation" is composed of "fields". A field is composed of elements, which are
pieces of data that are all the same size. Every paralation has one field that contains its
indices. An index numbers can be thought of as specifying a "site" or processor.
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A rough analogy to a paralation is a table where each column is a field. Each row has
an index number that specifies the "site" or processor that the row specified by that index
number is processed on.

The model guarantees locality for data used at a processing site, and for all the
processing sites within a paralation. This means all the elements in a row will be stored
close together in memory. Additionally, all the processors associated with a particular
paralation are logically "close" to each other. The distance between sites within a paralation
is determined by the "shape" of the paralation. The shape is under programmer control. For
example, if a paralation were shaped like a ring and had 3 sites, the shape captures the fact
that site 1 is logically 1 site away from both site 2 and site 3.

The Paralation model supports three operations: "Elementwise evaluation", "mapping"
and "move". Elementwise evaluation is an operation that acts on a field of the paralation. It
performs the same operation on each element and creates a new field containing the result.
Since each element in a field resides at a different site, operations occur in parallel. The
elementwise evaluation is complete when all the sites finish executing this code.
Elementwise evaluation is the only construct for synchronization supported between sites.
Any code that requires synchronization within the elementwise evaluation is considered an
error.

Data is moved between paralations by the "move" operator. Elements to be moved are
determined by a "mapping". A mapping is created by a "match" operation. Match
operations allow the programmer to identify elements within one paralation that are to be
associated with elements in a different paralation. The "move" can be thought of as a kind of
parallel assignment statement which over-writes a field in a paralation with data firom
another paralation.

The Paralation model is compatible with any parallel architecture, but the author
contends that "a crossbar-based shared memory machine is not the ideal target". This is
because the shared memory implementation "ignores the locality properties of paralations
and fields." The author goes on to state that "this is inherent in the idea of shared memory
hardware, which hides the cost of communication." In other words, information about the
locality of a paralation is of no use if the cost of communication from one processor to
another is always the same. This model is best suited to medium or fine grained MIMD or
SIMD machines.

PCN

PCN (Program Composition Notation) is an imperative block-structured expression
language with guarded commands for parallelism It attempts to combine the functional
style of Lisp for structiaing blocks and statement segments, with a concise style similar to C
for composing statement and expression sequences. The declaration and block structure is
intended to map to data flow graphs, and the composed segments to the actions of nodes in
this graph. Relating segments to nodes allows monitoring and tracing to be done according
to the structure specified by the program, and gives a programmable way to help make
execution sequences meaningful for dynamic and post mortem analysis. Two tools Gauge
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and Upshot are part of the interpretation system intended to this monitoring facility to
provide execution profiles (e.g., to improve load balancing) and collect trace information to
assist in performance monitoring and tuning. Upshot can be used to do complicated event
tracing for post mortem analysis, debugging, and even testing in the presence of potential
race conditions or deadlock.

The PCN system is a combination of a language, interpreter and library. It supports
high-level programming and debugging as well as the special kinds of performance
assessment already highlighted. It allows interface to FORTRAN and C programs via
interface directives, and is intended to facilitate the connection of commonly used sequential
segments using some simple notions to develop a parallel program:

"* definitional variables, for controlling the exchange of information between
concurrently executing potentially interfering program segments

"* concurrent composition, for building parallel programs by composing segments
into systems having a number of independently executing threads

"* controlled nondeterministic choice, for expressing intrinsic parallelism of program
segments, following Djistra's notion of guarded commands where the guards need
not be mutually exclusive

"* encapsulation of state change, by restricting use of data structures subject to state
change to program segments where they are not shared

This composition strategy is very similar to the notions of CODE, except that
hierarchies of sequential segments can be built and synchronization of shared data is based
on a distributed rather than structured global data basis. This is generally more efficient, and
certainly more programmable. PCN is oriented towards making parallel system
programming a practical reality, and supporting monitoring and tuning in a style similar to
current sequential development methods.

Proteus

This is a wide-spectrum language being developed at Duke with a range of parallel
control constructs, intended to provide a complete set of possible notations for
programming parallel algorithms. It supports a set of synchronization primitives intended to
allow mutual exclusion on concurrent objects, with mechanisms provided to map the control
primitives to MIMD, SIMD or specialized architectures. It supports specification of process
sequencing and time constraints to allow flexible target independent real-time programming.
It competes with languages such as Crystal which encourage refinement, but supports more
specific and constrained concurrency implementation.

RAPIDE

Developed at Stanford University, RAPIDE is a process-strniured expression
language with guarded commands for parallelism. It attempts to combine the functional
style of Lisp for structuring blocks and statement segments, with a process-oriented
structure similar to VHDL for composing statement and expression sequences. The process
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structure is intended to map to data flow graphs, and the composed segments to the events
associated with nodes in this graph. Relating events to nodes allows monitoring and tracing
to be done according to the structure specified by the program, and gives a programmable
way to help make execution sequences meaningful for dynamic analysis and verification.

Strand-88

Strand is a single assignment language, with a functional programming style,
supporting six programmable communication methods that model various kinds of parallel
architecture. The fundamental notion is communicating processes, which synchronize using
data flow constraints according to data availability. Strand is a parallel programming tool
that includes a development environment and parallel programming libraries. Strand
computes via reduction of a pool of extremely fight weight processes defined by evaluating
guarded-Hom clauses. Processes communicate by reading and writing shared variables
(communication channels) which can only be defined once. A computation step involves
removing a process from a pool Lf Vhe process is predefined, then it is executed
immediately; otherwise a reduction attempt is made. Tins involves data flow
synchronization. The process must wait until its constraints are satisfied; it then changes
state and forks new goal processes, which are added into the process pool. This process
continues until the pool is empty. Computation is then complete.

The programming system supports a variety of virtual machines and load balancing
tools to ease the programming tasks and allow applications to scale when additional
hardware becomes available. It is transportable across different MIMD shared or distributed
memory machines. To enable the reuse of existing code, Strand supports a multi-lingual
mechanism which consists of: (1) a logic programming approach that allows users to
specify parallel program constructs and synchronization in a sirnple way, and (2) a foreign
interface which allows a program construct to be implemented in existing sequential C and
FORTRAN or by specialized hardware.

Uc

Developed at UCLA, UC is based on the UNITY model of parallel programs.
Development of UC was driven by a desire to separate efficiency concerns from
programming issues when writing a parallel program. It is easier to develop and maintain a
program if the language presents a simple virtual machine model to the programmer. On the
other hand, execution costs are optimized by taking advantage of specific architectural
features of a parallel processor such as the inter connection topology. However, with most
parallel programming languages the modification of the code to exploit a particular
architectural feature changes the meaning of the program perhaps causing a bug, or possibly
obscuring the algorithm making the program hard to maintain.

UC is an extension of C with a few high level parallel constructs allowing the
algorithm to be expressed in an abstract, high-level language. It adds one data type -
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index-set, one operator - reduction, and four constructs to express dependencies among
statements - par, oneof, seq and solve. It also disallows goto statements and only allows C
pointers to be used to pass an array (or array slice) as an argument to a function.

An index-set represents an ordered set of integers, each of which must be a constant
expression. The reduction operator is used to perform a binary operation on a set of
operands. The par construct indicates that the following statements may be executed in
parallel, while the seq construct indicates the statements must execute sequentially. The
solve construct may be used to write programs that solve a set of proper equations. The
oneof construct represents a non-deterministic choice. Initially the compiler generates a
default mapping of the program data-space to the target architecture that allows a
programmer to develop a correct prototype.

A separate map section of the program can be specified to override the default data
mappings of the compiler. The data mapping can be improved to better match the
underlying architecture without changing the correctness of the program. As a result the
program is easier to develop and maintain while execution remains competitive with other
languages.

UNITY

UNITY is the specification language used by Chandy and Misra in their 1988 book
on parallel program design. It was intended as a way to unify parallel programming and
verification in a single algorithm definition and proof system. It provides a means of
expressing algorithms precisely in an architecture independent manner and provides a
methodology for using architecture dependent refinements to produce proofs of program
completion. This is the background for a formal system for verifying parallel programs.
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ROME LABORATORY

Rome Laboratory plans and executes an interdisciplinary program in re-

search, development, test, and technology transition in support of Air

Force Command, Control, Communications and Intelligence (C 31) activities

for all Air Force platforms. It also executes selected acquisition programs

in several areas of expertise. Technical and engineering support within

areas of competence is provided to ESD Program Offices (POs) and other

ESD elements to perform effective acquisition of C 3 I systems. In addition,

Rome Laboratory's technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical competence and research programs in areas

including, but not limited to, communications, command and control, battle

management, intelligence information processing, computational sciences

and software producibility, wide area surveillance/sensors, signal proces-

sing, solid state sciences, photonics, electromagnetic technology, super-

conductivity, and electronic reliability/maintainability and testability.


